Supporting Information

Lipase-catalyzed synthesis of chiral poly(ester amide)s with alternating sequence of hydroxy acid and L/D-aspartate units

Yiru Liang, a Yu Zhang, a Yujing Hu, a Bo Xia, b Xianfu Lin a and Qi Wu* a

a Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
b Department of Biological Environment, Jiyang College of Zhejiang A&F University, Zhuji 311800 P. R. China.

(Fax: + 86 571 87951895; E-mail: llc123@zju.edu.cn, wuqi1000@163.com)

Table of Contents

1. Synthesis of N-(6-hydroxyhexanoyl) aspartate diesters..............................S2
2. Copies of 1H NMR, 13C NMR and HR-MS of 5a-5d....................................S4
3. Copies of 1H NMR, 13C NMR and FTIR of PA-PD..S6
4. Copies of 2D-NMR of PA..S11
5. Copies of SEC of PA-PD...S13
6. DSC curves of PB-PD..S15

References ..S16
1. Synthesis of N-(6-hydroxyhexanoyl) aspartate diesters.

The methods to obtain 2, 3, 4 and 5 were adapted from the literature with some modifications.1-3

(1) Synthesis of 6-(tert-Butyldimethyl)siloxyhexanoic acid 2:

\[
\text{HO-} \quad \text{C} \quad \text{OH} \quad \xrightarrow{\text{TBDMSI}} \quad \text{TBDMS-} \quad \text{O-} \quad \text{C} \quad \text{OH}
\]

tert-Butyldimethylsilylchloride (0.11 mol) was added to a mixture of 1 (0.1 mol) and imidazole (0.2 mol) in DMF (90 mL). The reaction mixture was stirred overnight at 50 °C under nitrogen atmosphere and poured into a separatory funnel containing 200 mL of brine and extracted 4 times with 200 mL of diethyl ether. The organic fractions were combined, dried over MgSO₄, filtered and concentrated under reduced pressure to give the crude product which was further purified via flash chromatography eluting with 1:1 hexanes:ethyl acetate to give 2 as a clear colorless oil (80% yield); ¹H NMR (400 MHz, CDCl₃): δ 3.53-3.56 (t, CH₂OSi, 2H), 2.14-2.17 (t, CH₂COOH, 2H), 1.27-1.50 (m, SiOCH₂[CH₃]₃CH₂COOH, 6H), 0.82 (s, (CH₃)₃CSi, 9H), 0.01 (s, (CH₃)₂Si, 6H).

(2) Synthesis of 4:

\[
\text{TBDMS-} \quad \text{O-} \quad \text{C} \quad \text{OH} \quad \xrightarrow{\text{DCC, HOBT}} \quad \text{TBDMS-} \quad \text{O-} \quad \text{C} \quad \text{NH} \quad \text{O} \quad \text{O} \quad \text{R}^1 \quad \text{O} \quad \text{R}^2
\]

Under the ice bath condition, a solution of 3 (10 mmol) in 10 mL CH₂Cl₂ was added dropwise to a mixture of 2 (10 mmol), 1,3-Dicyclohexylcarbodiimide (DCC, 11 mmol) and 1-Hydroxybenzotriazole (HOBT, 12 mmol) in 30 mL CH₂Cl₂. The reaction mixture was then stirred overnight at 0 °C, concentrated under reduced pressure and 200 mL diethyl ether added followed by filtration. The filtrate was poured into a separatory funnel and washed with 200 mL of sat. NaHCO₃, 5 wt% citric acid and brine. After dried over MgSO₄ and filtered, the filtrate was concentrated under reduced pressure to get the crude product. The crude product was then purified via flash chromatography using 1:1 hexanes:ethyl acetate as eluent to give 4 as a clear colorless oil (70% yield); ¹H NMR (400 MHz, CDCl₃): 7.22-7.28 (m, PhCH₂O, 5H), 6.58-6.60 (d, CONH, 1H), 5.05-5.13 (q, J=12 Hz, PhCH₂O, 2H), 4.81-4.93 (m, NH(CH)COOR, 1H), 3.51-3.54 (m, COOCH₃ and SiOCH₂, 5H), 2.92-2.97 (dd, J=4.4, 17.2 Hz, CHCH₂COOCH₃, 1H),
2.73-2.78 (dd, J=4.4, 17.2 Hz, CHCH$_2$COOCH$_3$, 1H), 2.14-2.17 (t, J=7.6 Hz, CH$_2$COONH, 2H), 1.45-1.27 (m, SiOCH$_2$(CH$_2$)$_2$CH$_2$CONH, 6H), 0.82 (s, (CH$_3$)$_3$CSi, 9H), 0.00 (s, (CH$_3$)$_2$Si, 6H).

4b–4d were synthesized through the similar method as 4a, starting from different Asp derivatives.

(3) Synthesis of 5:

A mixture of glacial acetic acid (20 mmol) and tetrabutylammonium fluoride (TBAF) (20 mmol, 1.0 M solution in THF) was added to a solution of 4a (10 mmol) in 20 mL THF. The reaction mixture was stirred overnight at 50 °C and then poured into a separatory funnel containing 200 mL of CH$_2$Cl$_2$ and 200 mL of H$_2$O. The organic layer was then washed with sat. NaHCO$_3$, 5 wt% citric acid and H$_2$O, dried over MgSO$_4$, filtered and concentrated under reduced pressure. The crude product was purified via flash chromatography using 1:1 hexanes:ethyl acetate as eluent to give 5a as a transparent waxy solid (90% yield).

5b–5d were synthesized through the similar method as 5a, only with the different Asp derivatives 4b–4d as starting materials.
2. Copies of 1H NMR, 13C NMR and HR-MS of 5a-5d.

![Figure S1](image_url)

Fig. S1 1H NMR (a), 13C NMR (b) and HR-MS (c) of N-(6-hydroxyhexanoyl)-L/D-α-benzyl-β-methyl-aspartate 5a/b
Fig. S2 1H NMR (a), 13C NMR (b) and HR-MS (c) of N-(6-hydroxyhexanoyl)-L/D-α-methyl-β-benzyl-aspartate 5c/d
3. Copies of 1H NMR, 13C NMR and FTIR of PA-PD.

(a)

(b)
Fig. S3 1H NMR (a), 13C NMR (b) and FTIR (c) spectra of PA.
Fig. S4 1H NMR (a), 13C NMR (b) and FTIR (c) spectra of PB
Fig. S5 1H NMR (a), 13C NMR (b) and FTIR (c) spectra of PC.
Fig. S6 1H NMR (a), 13C NMR (b) and FTIR (c) spectra of PD.
4. Copies of 2D-NMR of PA.

![2D-NMR diagram of PA](image)
Fig. S7 2D-NMR of PA in CDCl$_3$: 1H, 1H-COSY spectrum (a), 13C, 1H-HSQC spectrum (b) and 13C, 1H-HMBC spectrum (c).
5. Copies of SEC of PA-PD

Fig. S8 SEC of PA in DMF.

<table>
<thead>
<tr>
<th>Mn</th>
<th>Mw</th>
<th>MP</th>
<th>Mz</th>
<th>Mz+1</th>
<th>Mw/Mn</th>
<th>Mz/Mw</th>
<th>Mz+1/Mw</th>
</tr>
</thead>
<tbody>
<tr>
<td>12990</td>
<td>18480</td>
<td>17700</td>
<td>24720</td>
<td>31200</td>
<td>1.42</td>
<td>1.34</td>
<td>1.69</td>
</tr>
</tbody>
</table>

Fig. S9 SEC of PB in THF.

<table>
<thead>
<tr>
<th>Mn</th>
<th>Mw</th>
<th>MP</th>
<th>Mz</th>
<th>Mz+1</th>
<th>Mw/Mn</th>
<th>Mz/Mw</th>
<th>Mz+1/Mw</th>
</tr>
</thead>
<tbody>
<tr>
<td>7950</td>
<td>10240</td>
<td>10083</td>
<td>12619</td>
<td>15044</td>
<td>1.28</td>
<td>1.23</td>
<td>1.47</td>
</tr>
</tbody>
</table>
Fig. S10 SEC of PC in THF.

<table>
<thead>
<tr>
<th>Mn</th>
<th>Mw</th>
<th>MP</th>
<th>Mz</th>
<th>Mz+1</th>
<th>Mw/Mn</th>
<th>Mz/Mw</th>
<th>Mz+1/Mw</th>
</tr>
</thead>
<tbody>
<tr>
<td>4650</td>
<td>6510</td>
<td>7030</td>
<td>8340</td>
<td>10040</td>
<td>1.40</td>
<td>1.28</td>
<td>1.54</td>
</tr>
</tbody>
</table>

Fig. S11 SEC of PD in THF.

<table>
<thead>
<tr>
<th>Mn</th>
<th>Mw</th>
<th>MP</th>
<th>Mz</th>
<th>Mz+1</th>
<th>Mw/Mn</th>
<th>Mz/Mw</th>
<th>Mz+1/Mw</th>
</tr>
</thead>
<tbody>
<tr>
<td>2620</td>
<td>3440</td>
<td>3440</td>
<td>4340</td>
<td>5290</td>
<td>1.31</td>
<td>1.26</td>
<td>1.54</td>
</tr>
</tbody>
</table>
6. DSC curves of PB-PD

Fig. S12 DSC curves of PB.

Fig. S13 DSC curves of PC.
DSC curves of PD

T_g: -14.90 °C

Fig. S14 DSC curves of PD.

References