Supporting Information

Solution-Processed Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes Using New Polymeric Emitter Containing Non-conjugated Cyclohexane Units

Hyung Jong Kim, Chiho Lee, Mallesham Godumala, Suna Choi, Seo Yeon Park, Min Ju Cho, Sungnam Park* and Dong Hoon Choi*

Department of Chemistry, Research Institute for Natural Sciences, Korea University, 5 Anam-dong, Sungbuk-gu, Seoul 136-701, South Korea

KEYWORDS: cyclohexane unit, organic light emitting diode, thermally activated delayed fluorescence, polymeric emitter, solution process.

Correspondence to: spark8@korea.ac.kr, dhchoi8803@korea.ac.kr

Fig. S1 (a) Optimized geometry, (b) HOMO and LUMO spatial distribution, and (c) energy level diagram for DMAC-TRZ calculated by DFT (B3LYP/6-31G) using Gaussian 09W.
Fig. S2 Photoluminescence (PL) spectra of P(DMTRZ-Cp) in solvents with different polarities.

Fig. S3 Differential scanning calorimetry curve for P(DMTRZ-Cp).
Table S1 Photophysical properties of the P(DMTRZ-Cp)-doped with mCP.

<table>
<thead>
<tr>
<th>Polymer Emitter</th>
<th>τ_p^a (ns)</th>
<th>τ_d^a (μs)</th>
<th>$\Phi_p / \Phi_d / \Phi_{pl}$</th>
<th>k_p^c (s$^{-1}$)</th>
<th>k_d^d (s$^{-1}$)</th>
<th>k_{isc}^e (s$^{-1}$)</th>
<th>k_{risc}^f (s$^{-1}$)</th>
<th>k_{nrT}^g (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(DMTRZ-Cp)</td>
<td>12.2</td>
<td>1.8</td>
<td>0.21/0.32/0.53</td>
<td>8.22x107</td>
<td>5.56x105</td>
<td>4.03x107</td>
<td>1.07x106</td>
<td>3.20x104</td>
</tr>
</tbody>
</table>

a PL lifetimes of the prompt (τ_p) and delayed (τ_d) decay components (film). b Absolute photoluminescence quantum yield using an integrating sphere in the solution and film states without degassing (prompt, Φ_p) and under nitrogen (delayed: Φ_d, total: Φ_{pl}). c Prompt fluorescence decay rate constant. d Delayed fluorescence decay lifetime. e The radiative decay rate constant of the singlet excited state. f The rate constant for intersystem crossing (ISC) from the singlet excited state to the triplet excited state. g The rate constant for reverse intersystem crossing (RISC) from the triplet excited state to the singlet excited state. h The non-radiative (nr) decay rate constant of the triplet excited state.

To further understand the fundamental mechanism of the TADF polymeric emitter, the kinetic parameters of the polymeric emitter-doped film in mCP were determined from the experimental data (Table S1). The prompt (Φ_p) and delayed (Φ_d) fluorescence quantum yields were determined by the ratio of emission area in the transient PL spectra based on total photoluminescence quantum yield (Φ_{pl}). Prompt (τ_p) and delayed (τ_d) fluorescence lifetimes are obtained by fitting the transient PL curve. Through this values, prompt (k_p) and delayed (k_d) fluorescence decay rate constants (where $k_p = 1/\tau_p$ and $k_d = 1/\tau_d$) were obtained. The radiative decay rate constants of the singlet excited state (k_{rS}^i), the rate constant for intersystem crossing (k_{isc}, $S_1 \rightarrow T_1$), the rate constant for reverse intersystem crossing (k_{risc}, $T_1 \rightarrow S_1$) were calculated using the following equations.

$$k_{rS}^i = k_p \cdot \Phi_p$$
$$k_{isc} = k_p \cdot (1-\Phi_p)$$
$$k_{risc} = (k_p \cdot k_d / k_{isc}) \cdot (\Phi_d / \Phi_p)$$
From the equations (1)-(3), the non-radiative (nr) decay rate constant of the triplet excited state (k_{nrT}) can be obtained.

$$k_{nrT} = k_d - k_{RISC} \Phi_p$$ \hspace{1cm} (4)

This value was based on the assumption that the non-radiative decay rate constant of the singlet excited state (k_{nrS}) is zero at 300 K.1,2

All the kinetic parameters including PL characteristics are summarized in Table S2 and it demonstrate that the P(DMTRZ-Cp) polymeric emitter-doped film with mCP shows comparable rate constant values.$^{1,3-10}$

Fig. S4 PL spectra of the mCP film and P(DMTRZ-Cp): mCP blend film (5 wt% and 25 wt%).
Fig. S5 Normalized electroluminescence (EL) spectra of devices based on P(DMTRZ-Cp) (25 wt%) as functions of different applied voltages.

Fig. S6 (a) Current density-voltage-luminance (J-V-L) curves, (b) current efficiency-luminance-power efficiency curves, (c) external quantum efficiency (EQE)-current density (η_{ext}-J) curves and (d) electroluminescence (EL) spectra at 1000 cd/m2 of TADF-OLEDs fabricated using the new P(DMTRZ-Cp) polymer emitter at different concentrations (5, 10, 15 wt%).
Fig. S7 AFM (a) height and (b) phase images of mCP:P(DMTRZ-Cp) (25 wt%) blended film.

To investigate the surface homogeneity of the emitting layer, an AFM image of a blend film (mCP: P(DMTRZ-Cp) (25 wt%)) was measured. High uniformity and smoothness were expected to be sufficient to act as a light emitting layer.

Notes and references

