Defect Control in $\text{Ca}_{1-\delta}\text{Ce}_\delta\text{Ag}_{1-\delta}\text{Sb}$ ($\delta \approx 0.15$) Through Nb Doping

Xin Li, a Jun-Jie Yu, b Yin-Tu Liu, b Zhen Wu, a Jia Guo, a Tie-jun Zhu, b Xin-bing Zhao, b Xu-Tang Tao a and Sheng-Qing Xia * a

a State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, Shandong 250100, People’s Republic of China.
b State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China.

Supporting Information

Contents

1、Figure S1. The electronic (κ_e) and lattice (κ_l) contributions of thermal conductivity for $\text{Ca}_{0.725+x}\text{Nb}_{0.1-x}\text{Ce}_{0.15}\text{AgSb}$ ($x \leq 0.05$) and $\text{Ca}_{0.85}\text{Ce}_{0.15}\text{Ag}_{0.85}\text{Sb}$ compounds.

2、Figure S2. Seebeck Pisarenko plot for $\text{Ca}_{0.725+x}\text{Nb}_{0.1-x}\text{Ce}_{0.15}\text{AgSb}$ ($x \leq 0.05$) and $\text{Ca}_{0.85}\text{Ce}_{0.15}\text{Ag}_{0.85}\text{Sb}$ compounds. Experimental data are shown as scattered dots in different colors and the curves were calculated based on the SPB (Single Parabolic Band) model.
Figure S1. The electronic (κ_e) and lattice (κ_l) contributions of thermal conductivity for Ca$_{0.725+x}$Nb$_{0.1-x}$Ce$_{0.15}$AgSb ($x \leq 0.05$) and Ca$_{0.85}$Ce$_{0.15}$Ag$_{0.85}$Sb compounds.
Figure S2. Seebeck Pisarenko plot for Ca$_{0.725+x}$Nb$_{0.1-x}$Ce$_{0.15}$AgSb ($x \leq 0.05$) and Ca$_{0.85}$Ce$_{0.15}$Ag$_{0.85}$Sb compounds. Experimental data are shown as scattered dots in different colors and the curves were calculated based on the SPB (Single Parabolic Band) model.