Supporting Information

Low-cost p-type dye-sensitized solar cells based on Dawsontype transition-metal-substituded polyoxometalates inorganic cosensitizers

Xiang-Wei Guo, Xiao-Hong Li, Zhu-Jun Liu, Wei-Lin Chen*, Xiao-Tao Zheng, En-

Bo Wang*, Zhong-Min Su

Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China

Experimental Section

Material Preparation

All the reagents and chemicals were purchased commercially and used without further purification. $P_2W_{17}Co$ and $P_2W_{17}Mn$ were synthesized according to the reported method^{S1}.

Sloar Cell Fabrication

FTO conductive glass was ultrasonically cleaned with surfactant, isopropanol, ethanol and dried with N₂. The photocathode film was prepared by screen-printing NiO paste on the clean substrate. Three layers of paste was deposited on the FTO glass to control the thickness of NiO working electrode. Layers then sintered at 350 °C for 5 min, 400 °C for 5 min, and 450 °C for 30 min. When cooled to room temperature, the film was immersed in 0.03 M P₂W₁₇Co DMSO solution, 0.03 M P₂W₁₇Mn DMSO solution and a mixture DMSO solution of 0.03 M P₂W₁₇Co with 0.015 M P₂W₁₇Mn for 24 h, followed by rinsing with ethanol and drying with N₂. The electrolyte is composed of 1.0 M LiI and 0.1 M I_2 in anhydrous acetonitrile. The solar cells were assembled by sandwiching a Pt counter electrode and a polyoxometalate photosensitizer sensitized photocathode. The electrolyte solution was then filled through the holes predrilled on the Pt electrode by applying vaccum. Afterward the holes were sealed with glass cover slide.

Characterization Methods

The UV-Vis spectra test were recorded on a Varian Cary 50 conc UV-Visible spectrophotometer in the range of 350-800nm. IR spectra were recorded using KBr pellets on a Bruker AXS TENSOR-27 FTIR spectrometer in the range of 4000-400 cm-1. TG curves were performed on a PerkinElmer TGA7 instrument at a heating rate of 10 °C/min from 25 °C to 600 °C. The diffuse reflectivity spectra were collected on a UV-2600 SHIMADZU UV-vis spectrophotometer in reflectance mode, which was measured from 220 nm to 850 nm using barium sulfate (BaSO₄) as a standard with 100% reflectance. Cyclic voltammograms were recorded on a CHI601D Electrochemical Workstation (Shanghai Chenhua Instrument Corp., China) at room temperature, using a glassy carbon electrode as the working electrode, a Pt wire as the counter electrode and a Ag/Ag^+ reference electrode. 0.1 M LiClO₄ was used as the supporting electrolyte. X-ray spectroscopy (EDS) of the samples was obtained from FEI Quanta 200 F microscope operated at an accelerating voltage of 20 kV. A Keithley 2400 source meter and a Zolix Omni-300 monochromator equipped with a 500 W xenon lamp were used for photocurrent action spectrum measurements, with a wavelength sampling interval of 10 nm and a current sampling time of 2 s under the full computer control. J–V characteristics and other photoelectrochemical experiments were performed on a CHI601D electrochemical workstation at room temperature equipped with the xenon lamp as the light source and an AM 1.5 solar filter.

Supplementary Physical and Chemical Characterizations

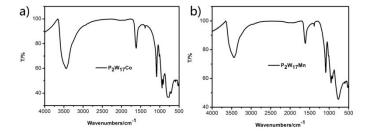
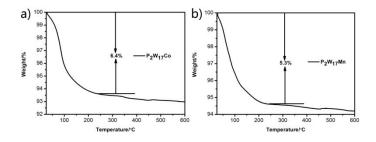



Figure. S1 IR spectra of $P_2W_{17}Co(a)$ and $P_2W_{17}Mn(b)$.

Figure. S2 TG analysis of $P_2W_{17}Co(a)$ and $P_2W_{17}Mn(b)$.

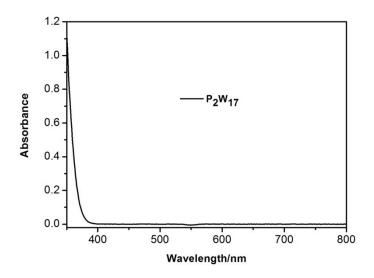


Fig. S3. the UV-vis spectrum of 1mM $K_{10}[\alpha_2 P_2 W_{17} O_{61}]$ in DMSO.

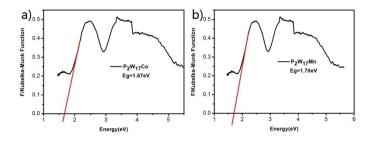


Figure. S4 Diffuse reflectivity spectra and plot of Kubelka–Munk function F against

energy E of $P_2W_{17}Co(a)$ and $P_2W_{17}Mn(b)$.

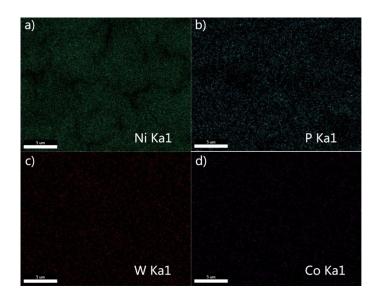
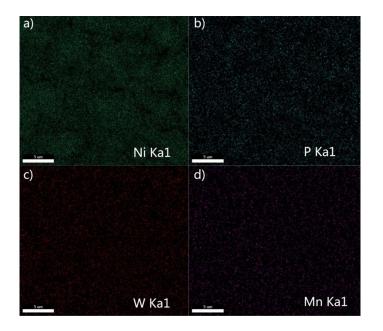



Figure. S5 Element mapping of P₂W₁₇Co sensitived NiO electrode.

Figure. S6 Element mapping of $P_2W_{17}Mn$ sensitived NiO electrode.

Table. S1 Parameters of photovoltaic performance for different dyes measured under100 mW/cm² simulated AM1.5G irradiation based on mesoporous NiO electrodes.

Dye	Electrolyte	V _{oc} (mV)	$J_{sc}(\mathrm{mA/cm^2})$	FF	PCE(%)	Reference
erythrosine B	I ₃ -/I-	82.8	0.232	0.27	0.0076	S2
C343		70	0.78	0.32	0.017	52
P1	- I ₃ -/I-	110	1.52	0.31	0.052	S3
P4	I ₃ -/I-	100	2.48	0.36	0.09	S4
[Ru(dcb) ₂ (NMI- phen)](PF ₆) ₂	I ₃ -/I-	95	0.16	0.36	0.006	S5
IrPhen	Co(dtbpy) ₃ ^{3+/2+}	345	0.14	0.44	0.021	
IrDPQCN2		508	0.25	0.54	0.068	S6
IrBpystyryl		383	0.37	0.44	0.061	
PMI-6T-TPA	I ₃ -/I-	218	5.35	0.35	0.41	S7
O2	I ₃ -/I-	94	1.43	0.37	0.050	59
O6		97	1.04	0.37	0.037	S8

07		90	1.74	0.38	0.060	
08		63	0.44	0.36	0.009	
011	I ₃ -/I-	79	1.16	0.36	0.033	S 8
012		92	1.84	0.34	0.051	
03		93	3.04	0.35	0.099	
013	I ₃ -/I-	89	2.66	0.31	0.074	S10
017		92	2.69	0.34	0.085	

Table. S2 Photovoltaic parameters of a batch of 9 devices measured under 100mW/cm² simulated AM1.5G irradiation based on mesoporous NiO electrodes.

100%Sun	$0.03MP_2W_{17}Co + 0.015MP_2W_{17}Mn$				
	Cell-1	Cell-2	Cell-3		
$V_{oc}(mV)$	102	100	102		
$J_{sc}(\mathrm{mA/cm^2})$	1.51	1.51	1.49		
FF	0.299	0.307	0.305		
PCE(%)	0.0461	0.0464	0.0464		
100%Sun	0.03M P ₂ W ₁₇ Co				
	Cell-1	Cell-2	Cell-3		
<i>Voc</i> (mV)	100	103	102		
$J_{sc}(\mathrm{mA/cm^2})$	1.3	1.25	1.49		
FF	0.301	0.32	0.305		
PCE(%)	0.0391	0.0412	0.0464		
100%Sun	0.03M P ₂ W ₁₇ Mn				
	Cell-1	Cell-2	Cell-3		
$V_{oc}(mV)$	87	82	84		
$J_{sc}(\mathrm{mA/cm^2})$	1.21	1.279	1.268		
FF	0.302	0.299	0.296		
PCE(%)	0.0318	00314	0.0315		

Table. S3 Parameters of photovoltaic performance for $P_2W_{17}Mn$ of different concentrations measured under 100 mW/cm² simulated AM1.5G irradiation based on mesoporous NiO electrodes.

$P_2W_{17}Mn$	$V_{oc}(mV)$	$J_{sc}(\mathrm{mA/cm^2})$	FF	PCE(%)
0.015 M	83	1.144	0.297	0.0282
0.020 M	84	1.188	0.290	0.0289
0.025 M	85	1.201	0.289	0.0295
0.030 M	84	1.268	0.296	0.0315
0.035 M	83	1.255	0.292	0.304
0.040 M	85	1.187	0.298	0.0300

Table. S4 Optomization of concentrations of $P_2W_{17}Co$ and $P_2W_{17}Mn$. Photovoltaic parameters of a batch of 6 devices measured under 100 mW/cm² simulated AM1.5G irradiation based on mesoporous NiO electrodes.

$P_2W_{17}Co + P_2W_{17}Mn$	V _{oc} (mV)	$J_{sc}(\mathrm{mA/cm^2})$	FF	PCE(%)
0.03 M + 0.005 M	100	1.31	0.302	0.0396
0.03 M + 0.010 M	102	1.38	0.299	0.0421
0.03 M + 0.015 M	101	1.48	0.31	0.0463
0.03 M + 0.020 M	98	1.478	0.304	0.044
0.03 M + 0.025 M	95	1.503	0.301	0.0428
0.03 M + 0.030 M	90	1.51	0.297	0.0404

References

S1 D. K. Lyon, W. K. Miller, T. Novet, P. J. Domaille, E. Evitt, D. C. Johnson and R. G. Finke, J. Am. Chem. Soc. 1991, 113, 7209.

- S2 J. J. He, H. Lindström, A. Hagfeldt, S. E. Lindquist, J. Phys. Chem. B, 1999, 103, 8940.
- S3 P. Qin, J. Zhu, T. Edvinsson, G. Boschloo, A. Hagfeldt, L. C. Sun, J. Am. Chem. Soc., 2008, 130, 8570.
- S4 P. Qin, M. Linder, T. Brinck, G. Boschloo, A. Hagfeldt, L. C., Sun, Adv. Mater., 2009, 21, 2993.
- S5 D'Amario, A. M. Browna, L. Hammarström, Dalton Trans., 2012, 41, 13105.
- S6 M. Gennari, F. Légalité, L. Zhang, Y. Pellegrin, E. Blart, J. Fortage, A. M. Brown, A. Deronzier, M. N Collomb, M. Boujtita, D. Jacquemin, L. Hammarström, F. Odobel, J. Phys. Chem. Lett., 2014, 5, 2254.
- S7 A. Nattestad, A. J. Mozer, M. K. R. Fischer, Y. B. Cheng, A. Mishra, P. Bäuerle,U. Bach, *Nature Materials*, 2010, 9, 31.
- S8 Z. Q. Ji, G. Nau, Z. J. Huang and Y. Y. Wu, Energy Environ. Sci., 2011, 4, 2818.
- S9 Z. Q. Ji, G. Nau, Z. J. Huang, O. Kokhan and Y. Y. Wu, J. Phys. Chem. C, 2012, 116, 16854.
- S10 Z. Q. Ji, G. Nau and Y. Y. Wu, ACS Appl. Mater. Interfaces, 2013, 5, 8641.