Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2017

C-N-S tridoping into TiO₂ matrix for photocatalytic applications: Observations, speculations and contradictions in the codoping process[†]

C. Sushma, S. Girish Kumar*

Department of Chemistry, School of Engineering and Technology, CMR University, Bangalore-562149, KARNATAKA, INDIA, E-mail: girichem@yahoo.co.in

SUPPLEMENTARY MATERIALS

Table S1 Comparison of Phase Transformation Pathways between TiO₂ and C-N-S-TiO₂ with different dopant precursors.

Preparation Methods	TiO ₂	C-N-S-TiO ₂	Dopant Precursor	Ref.
Fluoride-induced self-transformation	A	A	Cysteine	[18]
Hydrothermal	A-R	A	Cysteine	[24]
Sol-gel	A	A	Cysteine	[31]
Sol-gel & ball- milling	A-R	A	Thiourea	[16]
Hydrothermal	A	A	Thiourea	[17]
Modified Sol-gel	A	A	Thiourea	[19]
Sol-gel	A-R	A	Thiourea	[20]
Sol-gel	A-R	A	Thiourea	[22]
Surfactant assisted Sol-gel	A	A-R	Thiourea	[25]
Sol-gel	A-B	A-B with no change in phase content	Thiourea	[26]
Sol-gel	A-B-R	A-B-R with increased A content	Thiourea	[27]
Sol-gel	A	A	Thiourea	[29]
Simple Hydrolysis	A	A	Thiourea	[30]
Sol-gel	A-R	A	Thiourea	[32]
Hydrothermal	A	A	Thiourea	[34]
Hydrothermal	A-R	A-R with slight increase in R content	Cystine	[21]
Hydrothermal	A-R	A-R with slight increase in R content	Cystine	[23]
Hydrothermal	A	A	Cystine	[28]
Sol-gel	A-B-R	A	Cystine	[33]
Sol-gel	A-R	A	Cystine	[35]

Note: A-Anatase; B-Brookite; R-Rutile

Table S2 Doping modes of Carbon, Nitrogen and Sulfur occupying cationic and anionic sites in titania.

Ti ⁴⁺ lattice sites	O ²⁻ lattice sites	Ref.
	C, N, S	[18, 29]
C, S	N	[17]
C, S	$N_i + N_s$	[16, 20, 23, 28]
C, S	N_i	[27, 34]
C	N, S	[19]
S	N	[26, 30]
S	C	[32]
S	$N_i + N_s$	[21, 33, 35]
S	N_{i}	[22]
	N, S	[24]
	S	[25, 31]

Note: N_i - Interstitial nitrogen doping; N_s -Substitutional nitrogen doping. The surface segregation of dopant species (without doping) is not considered.

Table S3

Various surface states originated from carbon doping with different precursors

Thiourea	Cysteine	Cystine
Ti-C	Ti-C	
Ti-O-C		Ti-O-C
C-O	C-O	C-O
C=O	C=O	C=O
С-ОН	С-ОН	
		C-C
		O-C=O

Various surface states arised from nitrogen doping with different precursors

Thiourea	Cysteine	Cystine
O-Ti-N	O-Ti-N	O-Ti-N
Ti-O-N	Ti-O-N	Ti-O-N
Ti-N-O	Ti-N-O	
Ti-N	Ti-N	
NH_3	NH_3	
$\mathrm{NH_4}^+$	NH_4^+	
O-N-Ti		
N-Ti-N		
C-N		
N-H		
N-N		
N-O	N-O	
	NO_2	

Various surface states arised from nitrogen doping with different precursors

Thiourea	Cysteine	Cystine
Ti-S	Ti-S	
Ti-O-S (VI)		Ti-O-S
SO_4^{2-}	$\mathrm{SO_4}^{2 ext{-}}$	
Ti-O-S (IV)		

Note: Surface states coordinated with titanium indicates the doping modes, while rest corresponds to the surface species.