Supplementary Information

Coupling Ag-doping and rich oxygen vacancies in mesoporous NiCoO nanorods supported on nickel foam for highly efficient oxygen evolution

Kai-Li Yan a, Jing-Qi Chi a, Zi-Zhang Liu a,b, Bin Dong *a,b, Shan-Shan Lu a,b,

Xiao Shang a, Wen-Kun Gao a,b, Yong-Ming Chai *a, Chen-Guang Liu a

a State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, PR China

b College of Science, China University of Petroleum (East China), Qingdao 266580, PR China

* Corresponding author. Email: dongbin@upc.edu.cn (B. Dong), ymchai@upc.edu.cn (Y.-M. Chai)
Tel: +86-532-86981376, Fax: +86-532-86981787
Detailed calculation process of crystalline size:

Scherrer Equation:

\[D = \frac{k\lambda}{\beta \cos \theta} \]

where:

- \(k \) is a dimensionless shape factor; \(k = 0.89 \) in our article.
- \(\lambda \) is the X-ray wavelength; \(\lambda = 0.15 \) in our article.
- \(\beta \) is the line broadening at half the maximum intensity (FWHM), after subtracting the instrumental line broadening, in radians.
- \(\theta \) is the Bragg angle (in degrees).
Fig. S1 TEM mappings of Ni-Co@Ag40/NF
Fig. S2 XPS spectra of Ni-Co@Ag40/NF: (a) survey; (b) Ni 2p; (c) Co 2p; (d) Ag 3d; (e) O 1s.
Fig. S3 XRD patterns of Ag0/NF and Ag40/NF.
Fig. S4 XRD pattern of Ni-Co@Ag40/NF.
Fig. S6 SEM images of (a) Ag0/NF; (b) Ag40/NF.
Fig. S7 SEM images of NiCoO@Ag0/NF-Ar
Fig. S8 SEM images of NiCoO@Ag40/NF-Air
Fig. S9 The corresponding SEM image for performing EDX profile
Fig. S10 CVs of the double-layer capacitance measurement for the six different samples in 1 M KOH in the non-Faradaic region of 0.15-0.25 V vs. SCE with different scan rates, varying from 40 mV s\(^{-1}\) to 120 mV s\(^{-1}\):
(a) NiCoO/NF; (b) Ni-Co@Ag0/NF; (c) Ni-Co@Ag40/NF; (d) NiCoO@Ag0/NF-Ar; (e) NiCoO@Ag40/NF-Air; (f) NiCoO@Ag40/NF-Ar.
Table S1 Calculation results of crystalline size based on XRD patterns

<table>
<thead>
<tr>
<th>Crystalline phase</th>
<th>2-Theta</th>
<th>FWHM</th>
<th>Crystalline size/nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co based hydroxide hydrate</td>
<td>39.135</td>
<td>0.1224</td>
<td>71</td>
</tr>
<tr>
<td>CoO</td>
<td>42.423</td>
<td>0.204</td>
<td>39.8</td>
</tr>
<tr>
<td>Co$_3$O$_4$</td>
<td>36.963</td>
<td>0.2880</td>
<td>28.2</td>
</tr>
</tbody>
</table>
Table S2 Comparison of the OER activity for several recently reported highly active transition metal oxides electrocatalysts.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>J (mA cm$^{-2}$)</th>
<th>Overpotential (mV)</th>
<th>Electrolyte</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiCoO@Ag40/NF-Ar</td>
<td>100</td>
<td>350</td>
<td>1 M KOH</td>
<td>This work</td>
</tr>
<tr>
<td>Reduced Co$_3$O$_4$ NW</td>
<td>13.1</td>
<td>420</td>
<td>1 M KOH</td>
<td>S1</td>
</tr>
<tr>
<td>Co$_3$O$_4$ nanoparticles</td>
<td>10</td>
<td>420</td>
<td>1 M KOH</td>
<td>S2</td>
</tr>
<tr>
<td>NiCo layered double hydroxide</td>
<td>10</td>
<td>367</td>
<td>1 M KOH</td>
<td>S3</td>
</tr>
<tr>
<td>NixCo${3-x}$O$_4$ nanowire array</td>
<td>10</td>
<td>370</td>
<td>1 M KOH</td>
<td>S4</td>
</tr>
<tr>
<td>Ni substituted Co$_3$O$_4$ nanowire</td>
<td>10</td>
<td>370</td>
<td>1 M KOH</td>
<td>S5</td>
</tr>
<tr>
<td>Cu$_2$–Cu foams</td>
<td>10</td>
<td>350</td>
<td>1 M KOH</td>
<td>S6</td>
</tr>
</tbody>
</table>
Table S3 Comparison of OER activity data for different electrocatalysts.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>η at $J=100$ mA cm$^{-2}$ [mV]</th>
<th>Tafel slope (mV dec$^{-1}$)</th>
<th>Cdl (mF cm$^{-2}$)</th>
<th>Rct (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiCoO@Ag40/NF-Ar</td>
<td>350</td>
<td>104</td>
<td>44</td>
<td>0.72</td>
</tr>
<tr>
<td>NiCoO@Ag40/NF-Air</td>
<td>370</td>
<td>147</td>
<td>32</td>
<td>1.28</td>
</tr>
<tr>
<td>NiCoO@Ag0/NF-Ar</td>
<td>370</td>
<td>128</td>
<td>25</td>
<td>0.89</td>
</tr>
<tr>
<td>Ni-Co@Ag40/NF</td>
<td>400</td>
<td>153</td>
<td>18</td>
<td>1.32</td>
</tr>
<tr>
<td>Ni-Co@Ag0/NF</td>
<td>400</td>
<td>148</td>
<td>13</td>
<td>1.49</td>
</tr>
<tr>
<td>NiCoO/NF-Ar</td>
<td>410</td>
<td>185</td>
<td>6</td>
<td>3.98</td>
</tr>
</tbody>
</table>
References

