† Electronic Supplementary Information

Multiple Active Components Synergistically Driven Cobalt and Nitrogen Co-Doped Porous Carbon as High-performance Oxygen Reduction Electrocatalyst

Anquan Zhu, Pengfei Tan, Lulu Qiao, Yi Liu, Yongjin Ma, Xiang Xiong and Jun Pan*

State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, P. R. China

† Electronic Supplementary Information (ESI) available.

*Corresponding Author, Tel: +86-0731-88836646 Email: <u>jun.pan@csu.edu.cn (Jun Pan)</u>

Samples	Amount	Molar	Amount	Hydrothermal	Thermalysis	Atmosphere
	of	Quantity	of	Temperature	Temperature	
	g-C ₃ N ₄	of	D-glucose	(°C)	(°C)	
	(g)	Co-source	(g)			
		(mmol)				
C@N	0.5		2.16	120	900	Ar
Co@C-N-120-900	0.5	1	2.16	120	900	Ar
Co@C-N-140-900	0.5	1	2.16	140	900	Ar
Co@C-N-160-900	0.5	1	2.16	160	900	Ar

Table. S1 The raw materials for the preparation of the C@N and Co@C-N catalysts.

Figure S1 XRD patterns of as-prepared porous $g-C_3N_4$ and intermediate products (CNOCo) under ST 120 °C.

Figure S2 The SEM image (a) and TEM image (b) of porous $g-C_3N_4$.

Figure S3 The SEM images (a and b) of intermediate products (CNOCo) under ST 120 °C and the corresponding EDS mapping elements C, N, O and Co for the boxed area of image (b).

Figure S4 SEM images of (a) C@N and (b) Co@C-N-120-900, TEM images of (c) Co@C-N-120-900, (d) Co@C-N-140-900 and (e) Co@C-N-160-900 catalysts.

Samples	Pyridinic-N	Pyrrolic-N	Graphitic- N	Oxidized-N
C@N	68.07%	19.73%	8.72%	3.48%
Co@C-N-120-900	74.39%	17.96%	6.50%	1.15%
Co@C-N-140-900	62.42%	29.49%	1.8%	6.29%
Co@C-N-160-900	42%	49.64%	1.52%	6.83%

Table. S2 The relative percentage in C@N and Co@C-N catalysts from detaileddeconvolution of XPS N1s spectra.

Figure S5 (a) X-ray photoelectron spectroscopy (XPS) survey spectrum of C@N; (b, c and d) C 1s, N1s and Co2p high resolution spectrum of the C@N catalyst.

Figure S6 (a, b and c) C 1s high resolution spectrum of the Co@C-N-120-900, Co@C-N-140-900 and Co@C-N-160-900 catalysts, respectively.

Table. S3 The relative percentage in C@N and Co@C-N catalysts from detailed deconvolution of XPS C1s spectra.

Samples	C-C sp ²	C-N	0-C=0
C@N	67.55%	25.07%	7.38%
Co@C-N-120-900	67.02%	20.58%	12.4%
Co@C-N-140-900	66.88%	15.66%	17.45%
Co@C-N-160-900	65.49%	15.59%	18.91%

Table. S4 The summary for BET special surface area and pore volume (pore distribution) of Co@C-N-120-900, Co@C-N-140-900 and Co@C-N-160-900 catalysts.

	BET				
Samples	special surface area (SSA)	Pore volume	Pore diameter		
C@N	1108 m ² g ⁻¹	$2.876 \text{ cm}^3 \text{g}^{-1}$	ca. 3.031 nm		
Co@C-N-120-900	$1080 \text{ m}^2 \text{ g}^{-1}$	$2.463 cm^3 g^{-1}$	ca. 3.031 nm		
Co@C-N-140-900	$785 \text{ m}^2 \text{g}^{-1}$	$1.432 \text{ cm}^3 \text{g}^{-1}$	ca. 3.032 nm		
Co@C-N-160-900	$436 \text{ m}^2 \text{ g}^{-1}$	$0.734 \text{ cm}^3 \text{g}^{-1}$	ca. 4.957 nm		

Figure S7 (a) Cycle voltammograms of C@N, Co@C-N-120-900 and Pt/C recorded by purging the electrolyte with O₂-saturated and N₂-saturated sweeping the potential at a scan rate of 50mV s⁻¹; (b) Cycle voltammograms of Co@C-N-120-900, Co@C-N-140-900 and Co@C-N-160-900 recorded by purging the electrolyte with O₂-saturated and N₂-saturated sweeping the potential at a scan rate of 50mV s⁻¹.

Figure S8 (a and b) RDE voltammograms of the C@N recorded at different RDE rotation rates from 400 to 2025rpm and the corresponding K-L plots.

Figure S9 (a and b) RDE voltammograms of the Co@C-N-140-900 recorded at different RDE rotation rates from 400 to 2025rpm and the corresponding K-L plots.

Figure S10 (a and b) RDE voltammograms of the Co@C-N-160-900 recorded at different RDE rotation rates from 400 to 2025rpm and the corresponding K-L plots.

Figure S11 (a and b) RDE voltammograms of the Pt/C recorded at different RDE rotation rates from 400 to 2025rpm and the corresponding K-L plots.

Figure S12 Tafel plots of Pt/C, C@N and Co@C-N catalysts.

catalysts	Catalysts	$E_{\mathit{onset}}(V)$	$E_{1/2}(V)$	$J_k(mA/cm^2)$	n	references
	loading					
	(mg/cm^2)					
Co N-doped carbon	0.407	0.89	0.70 vs.RHE	~4.6	3.7	[1]
		vs. RHE				
Cobalt and		-0.098	-0.162 vs.	4.120 (-0.5V		
nitrogen-cofunction	0.1	vs.	Ag/AgCl	vs.Ag/Agcl)	3.72	[2]
alized graphene		Ag/AgCl				
Co-N onion-like	0.1529	-0.13 vs.	-0.19 vs.	3.98 (-0.4V	3.93	[3]
carbon		Ag/AgCl	Ag/AgCl	vs. Ag/Agcl)		
Co-N-CNTs	0.1	-0.138	~	5	4	[4]
		vs.				
		Ag/AgCl				
$Co-N_x/C$	0.4	0.93(vs.	~	5.49	3.97	[5]
		RHE)				
Co-N-PGCS	0.25	-0.075	-0.151 vs.	~6(-0.4V vs.	3.97	[6]
		vs.	Ag/AgCl	Ag/AgCl)		
		Ag/AgCl				
Co-CNF	0.498	~	0.832	~5	3.8	[7]
			vs.RHE			
Co SAs/N-C	~	0.982	0.881	~5.5	~	[8]
		vs.RHE	vs.RHE			
Co-N doped carbon	0.283	0.940	0.851	~4.8	3.7	[9]
		vs.RHE	vs.RHE	-		
Co@N-CNTs	0.6	0.929	0.849	6	~	[10]
		vs.RHE	vs.RHE			
Co,N-CNF	~	-0.082	-0.155	5.71	~	[11]
		vs.	vs.Ag/AgCl			
		Ag/AgCl		,		(10)
Co-NpGr	~	0.93V	~	~4	4.1	[12]
		vs.RHE	0.951		2.00	

Table. S5 The comparison of the ORR performances of the Co@C-N-120-900 andsome other Co, N co-doped carbon catalysts.

• E_{onset} , $E_{1/2}$ and n represent the onset potential, the half-wave potential and the transfer electron numbers of electrocatalysts, respectively.

References

- H.-S. Lu, H. Zhang, R. Liu, X. Zhang, H. Zhao and G. Wang, Appl. Surf. Sci., 2017, **392**, 402-409.
- [2]. S. Jiang, C. Zhu and S. Dong, J. Mater. Chem. A, 2013, 1, 3593-3599.
- [3]. M. Li, X. Bo, Y. Zhang, C. Han, A. Nsabimana and L. Guo, J. Mater. Chem. A, 2014, 2, 11672-11682.
- [4]. S. Fu, C. Zhu, H. Li, D. Du and Y. Lin, J. Mater. Chem. A, 2015, **3**, 12718-12722.
- [5]. J. Wei, Y. Hu, Z. Wu and H. Wang, et al., J. Mater. Chem. A, 2015, 3, 16867-16873.
- [6]. X. Liu, I. S. Amiinu, S. Liu, K. Cheng and S. Mu, Nanoscale, 2016, 8, 13311-13320.
- [7]. M.-J. Kim, D.-H. Nam, E.-A. Cho and H.-K. Kwon, J. Mater. Chem. A, 2015,
 3, 14284-14290.
- [8]. P. Yin, T. Yao, Y. Wu, L. Zheng and Y. Li, Angew. Chem. Int. Ed., 2016, 55, 10800-10805.
- [9]. F. Hu, H. Yang, C. Wang, Y. Zhang, H. Lu and Q. Wang, Small, 2016, DOI:10.1002/smll.201602507.
- [10]. S. Zhang, Y. Zhang, W. Jiang, X. Liu, S. Xu, R. Huo, F. Zhang and J. Hu, Carbon, 2016, **107**, 162-170.
- [11]. X. Yan, Y. Jia, J. Chen, Z. Zhu and X. Yao, Adv. Mater., 2016, 28, 8771-8778.
- [12]. T. Palaniselvam, V. Kashyap, S. N. Bhange, J. Baek and S. Kurungot, Adv. Funct. Mater., 2016, 26, 2150-2162.