Synthesis of MoS$_{2(1-x)}$Se$_{2x}$ and WS$_{2(1-x)}$Se$_{2x}$ alloy for enhanced hydrogen evolution reaction performance

Sajjad Hussaina,b, Kamran Akbara,c, Dhanasekaran Vikramand, K. Karuppasamyd, Hyun-Seok Kimd, Seung-Hyun Chuna,c, and Jongwan Junga,b

aGraphene Research Institute, Sejong University, Seoul 05006, Republic of Korea

bInstitute of Nano and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea

cDepartment of Physics, Sejong University, Seoul 05006, Republic of Korea.

dDivision of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea

* Corresponding author, E-mail: jwjung@sejong.ac.kr
Table S1. Comparison of electrochemical parameters for different electrocatalysts by using Pt as counter electrode.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Overpotential (mV vs RHE) @ 10 mA·cm⁻²</th>
<th>Tafel slope (mV·decade⁻¹)</th>
<th>Exchange current Density (jₒ, mA·cm⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt</td>
<td>40</td>
<td>52</td>
<td>3.01</td>
</tr>
<tr>
<td>MoS₂</td>
<td>252</td>
<td>87</td>
<td>1.23 x 10⁻²</td>
</tr>
<tr>
<td>MoS₂(1-x)Se₂ₓ</td>
<td>141</td>
<td>79</td>
<td>2.04 x 10⁻¹</td>
</tr>
<tr>
<td>WS₂</td>
<td>283</td>
<td>134</td>
<td>6.36 x 10⁻²</td>
</tr>
<tr>
<td>WS₂(1-x)Se₂ₓ</td>
<td>167</td>
<td>108</td>
<td>2.63 x 10⁻¹</td>
</tr>
</tbody>
</table>
Figure S1 (a-b). EDS spectra of elemental composition for (a) MoS$_{2(1-x)}$Se$_{2x}$ and (b) WS$_{2(1-x)}$Se$_{2x}$ alloys.
Figure S2. (a) FESEM image of MoS$_2$ and (b-e) their elemental mapping images (b) O (c) Sn (d) Mo and (e) S elements.
Figure S3. (a) FESEM image of MoS$_{2(1-x)}$Se$_{2x}$ alloy and (b-f) their elemental mapping images (b) O, (c) Sn, (d) S, (e) Mo and (f) Se elements.
Figure S4. (a) FESEM image of WS$_2$ and (b-e) their elemental mapping images (b) O (c) Sn (d) W and (e) S elements.
Figure S5. (a) FESEM image of WS$_{2(1-x)}$Se$_{2x}$ alloy and (b-f) their elemental mapping images (b) O, (c) Sn, (d) S, (e) W and (f) Se elements.
Figure S6. (a) TEM cross-sectional micrograph and (b) zoom-in view of FTO/MoS$_{2(1-x)}$Se$_{2x}$ structure. (c-f) TEM cross-sectional micrograph and its elemental mapping images (d) Mo, (e) S and (f) Se elements for MoS$_{2(1-x)}$Se$_{2x}$.
Figure S7. (a) TEM cross-sectional micrograph and (b) zoom-in view of FTO/WS$_{2(1-x)}$Se$_{2x}$ structure. (c-f) TEM cross-sectional micrograph and its elemental mapping images (d) W, (e) S and (f) Se elements for WS$_{2(1-x)}$Se$_{2x}$.
Figure S8. Polarization curves of MoS$_{2(1-x)}$Se$_{2x}$ film prepared using 30 min and 1 h post-annealing time in selenium environment at 500°C.
Figure S9. Polarization curves of WS$_{2(1-x)}$Se$_{2x}$ film prepared using 30 min and 1 h post-annealing time in selenium environment at 500°C.
Figure S10. Stability test for MoS$_{2(1-x)}$Se$_{2x}$ and WS$_{2(1-x)}$Se$_{2x}$ alloy catalyst. (a-b) Polarization curves of MoS$_{2(1-x)}$Se$_{2x}$ and WS$_{2(1-x)}$Se$_{2x}$ alloy catalysts for before and after 20h HER performance.
Figure S11. FE-SEM and EDS element analysis after 20 h HER operation. (a, c) MoS$_{2(1-x)}$Se$_{2x}$ and (b, d) WS$_{2(1-x)}$Se$_{2x}$ alloys.