Highly selectivity and sensitivity Zn(II) coordination

polymer luminescent sensor for Al³⁺ and NACs in

aqueous phase

Xiao Zhang^{‡*a}, Xuan Luo^{‡a}, Nanxi Zhang^c, Jie Wu^{**b}, Yong-Qing Huang^d

Supporting information

Figure cation:

Fig.S1 The TGA plots of compound 1.

Fig.S2 Powder X-ray diffraction patterns for ZnO and residue of compound **1** after thermogravimetric analysis.

Fig. S3 Experimental and simulated Powder X-ray diffraction patterns for compound 1.

Fig. S4 IR spectra of compound 1 and H₂TBA ligand.

Fig. S5 Solid state emission spectra of compound 1 and free H_2 TBA ligand upon excitation at 303 nm and 276 nm, respectively.

Fig. S6 Emission spectra of 1 dispersed in different solvents when excited at 295 nm.

Fig. S7 Powder XRD patterns of 1 immersed in different solvents at room temperature.

Fig. S8 Powder XRD patterns of simulated from the single-crystal data of 1 and synthesized compound and $1/M^{n+}$

Fig. S9 The fitting curve of the luminescence intensity of 1 at different Al^{3+} concentration

Fig. S10 IR spectra of compound 1 and 1/Al³⁺.

Fig. S11 The XPS of $Al^{3+}/1$ shows the typical peak of Al^{3+} at 531 ev.

Fig. S12 The luminescence intensity of 1 upon incremental addition of Al^{3+} ions and addition of HCl and Al^{3+} ions, respectively.

Fig. S13 Powder XRD patterns of simulated from the single-crystal data of 1 and synthesized compound and washed 1/Al³⁺.

Fig. S14 - S22 (a) The luminescence intensity of 1 upon incremental addition of NACs solution (5 mM) in water. (b) Stern-Volmer plot for the luminescence intensity of 1 upon the addition of NACs solution (5 mM) in water.

Fig. S23 - S31 The fitting curve of the luminescence intensity of 1 at different NACs.

Fig. S32 HOMO and LUMO of H₂TBA ligand and NACs

Fig. S33 Spectral overlaps between absorbance spectra of NACs and emission spectra of 1.

Table cation:

Table S1. The Selected Bond Lengths (Å) and Angles (deg) of Compound 1

Table S2 HOMO and LUMO energies for calculated NACs and H_2TBA at $B_3LYP/6-31G^*$ level of theory.

Fig.S1 The TGA plots of compound 1

Fig.S2 Powder X-ray diffraction patterns for ZnO and residue of compound 1 after thermogravimetric analysis.

Fig. S3 Experimental and simulated Powder X-ray diffraction patterns for compound 1.

Fig. S5 Solid state emission spectra of compound 1 and free H_2 TBA ligand upon excitation at 303 nm and 276 nm, respectively.

Fig S6 Emission spectra of 1 dispersed in different solvents when excited at 295 nm.

Fig. S7 Powder XRD patterns of 1 immersed in different solvents at room temperature.

Fig. S8 Powder XRD patterns of simulated from the single-crystal data of **1** and synthesized compound and **1**/Mⁿ⁺

Linear Equation: Y = -10695X + 187.40 R = 0.9954 Slope = $1.070 \times 10^7 M^{-1}$

δ=4.21 (N=10)

Fig. S9 The fitting curve of the luminescence intensity of 1 at different Al³⁺ concentration

Fig. S10 IR spectra of compound 1 and 1/Al³⁺

Fig. S11 The XPS of $1/Al^{3+}$ shows the typical peak of Al^{3+} at 74.8 ev

Fig. S12 Powder XRD patterns of simulated from the single-crystal data of **1** and synthesized compound and washed **1**/A**l**³⁺.

Fig. S13 The luminescence intensity of **1** upon incremental addition of Al³⁺ ions and addition of HCl and Al³⁺ ions, respectively.

Fig.14 (a) The luminescence intensity of 1 upon incremental addition of PA solution (5 mM) in water. (b) Stern-Volmer plot for the luminescence intensity of 1 upon the addition of PA solution

Fig.15 (a) The luminescence intensity of 1 upon incremental addition of 4-NP solution (5 mM) in water. (b) Stern-Volmer plot for the luminescence intensity of 1 upon the addition of 4-NP

Fig.16 (a) The luminescence intensity of 1 upon incremental addition of *p*-NT solution (5 mM) in water. (b) Stern-Volmer plot for the luminescence intensity of 1 upon the addition of *p*-NT

Fig.17 (a) The luminescence intensity of 1 upon incremental addition of 2,4-DNT solution (5 mM) in water. (b) Stern-Volmer plot for the luminescence intensity of 1 upon the addition of 2,4-DNT solution (5 mM) in water.

Fig.18 (a) The luminescence intensity of 1 upon incremental addition of 2-NP solution (5 mM) in water. (b) Stern-Volmer plot for the luminescence intensity of 1 upon the addition of 2 - NP

Fig.19 (a) The luminescence intensity of 1 upon incremental addition of NB solution (5 mM) in water. (b) Stern-Volmer plot for the luminescence intensity of 1 upon the addition of NB solution

Fig. Fig.20 (a) The luminescence intensity of 1 upon incremental addition of *o*-NT solution (5 mM) in water. (b) Stern-Volmer plot for the luminescence intensity of 1 upon the addition of *o*-NT solution (5 mM) in water.

Fig.21 (a) The luminescence intensity of 1 upon incremental addition of *m*-NT solution (5 mM) in water. (b) Stern-Volmer plot for the luminescence intensity of 1 upon the addition of *m*-NT

Fig.22 (a) The luminescence intensity of 1 upon incremental addition of *m*-DNB solution (5 mM) in water. (b) Stern-Volmer plot for the luminescence intensity of 1 upon the addition of *m*-DNB solution (5 mM) in water.

Linear Equation: Y = -8660X + 598.22 R = 0.9850 Slope = $8.66 \times 10^{6} M^{-1}$ $\delta = 4.21 (N=10)$

Fig. S24 The fitting curve of the luminescence intensity of 1 at different 4-NP concentration

(linear range 0-0.040 mM).

Slope = $7.98 \times 10^{6} \text{ M}^{-1}$ δ =4.21 (N=10)

concentration (linear range 0-0.040 mM).

concentration (linear range 0-0.040 mM).

Slope = $5.41 \times 10^{6} \text{ M}^{-1}$ δ =4.21 (N=10)

Fig. S27 The fitting curve of the luminescence intensity of 1 at different 2-Np concentration

(linear range 0-0.040 mM).

(linear range 0-0.040 mM).

Slope = $3.88 \times 10^{6} \text{ M}^{-1}$ δ =4.21 (N=10)

Fig. S29 The fitting curve of the luminescence intensity of 1 at different o-NT concentration

(linear range 0-0.040 mM).

Slope = $3.86 \times 10^{6} \text{ M}^{-1}$ δ =4.21 (N=10)

Fig. S30 The fitting curve of the luminescence intensity of 1 at different *m*-NT concentration

(linear range 0-0.040 mM).

Slope = $2.63 \times 10^{6} \text{ M}^{-1}$ δ =4.21 (N=10)

Fig. S31 The fitting curve of the luminescence intensity of 1 at different *m*-DNB concentration

(linear range 0-0.040 mM).

H2TBA m-DNB 2, 4-DNT 4-Np 2-Np p-NT o-NT m-NT NB PA

Fig. S32 HOMO and LUMO of H₂TBA ligand and NACs

Fig. S33 Spectral overlaps between absorbance spectra of NACs and emission spectra of 1.

Table S1. The Selected Bond Lengths (Å) and Angles (deg) of Compound ${\bf 1}$

Zn1-O1	1.920(2)	Zn1-O3	1.981(2)
Zn1-N1 ⁱ	2.033(3)	Zn1-N4 ⁱⁱ	2.015(3)
O1-Zn1-O3	124.76(11)	O1-Zn1-N1 ⁱ	104.44(12)
O1-Zn1-N4 ⁱⁱ	112.13(12)	O3-Zn1-N1 ⁱ	100.78(10)
O3-Zn1-N4 ⁱⁱ	103.05(11)	N4ii-Zn1-N1 ⁱ	110.92(11)

Symmetry codes: (i) 1/2+X,3/2-Y,1-Z; (ii) 1-X,1-Y,1-Z;

TableS2 HOMO and LUMO energies calculated for NACs and H_2TBA at B3LYP/6-31G* level of theory[1]

Analytes Homo(ev)	LUmo(ev)	Bond gap
-------------------	----------	----------

PA	-8.595166	-4.320934	4.274232
2,4-DNT	-8.41361	-3.409107	5.004502
<i>p</i> -NT	-7.655022	-2.792225	4.862798
NB	-7.887787	-2.912631	4.975156
<i>m</i> -DNB	-8.730522	-3.596104	5.134419
o-NT	-7.554773	-2.746777	4.807996
<i>m</i> -NT	-7.55031	-2.838932	4.711378
2-Np	-7.160373	-3.172671	3.987702
4-Np	-7.290064	-2.73967	4.550394
H ₂ TBA	-7.478068	-2.605952	5.034275

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz,

J. Cioslowski and D. J. Fox, Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, 2010.

[2]A. D. Becke, *Physical Review A*, **1988**, *38*, 3098-3100.

[3]C. Lee, W. Yang and R. G. Parr, *Physical Review B*, 1988, 37, 785-789

[4]A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652