Supplementary Information for “Facile preparation of monodispersed NiCo$_2$O$_4$ porous microcubes as a high capacity anode material for lithium ion batteries”

Yanming Wanga,b, Jia Lia, Sheng Chena,b, Bing Lia, Guangping Zhua, Fei Wanga,b,*, Yongxing Zhanga,*

aCollaborative Innovation Center of Advanced Functional Composites, Huaibei Normal University, Huaibei 235000, P. R. China

bAnhui Key Laboratory of Energetic Materials, Huaibei Normal University, Huaibei 235000, P. R. China

E-mail address: zyx07157@mail.ustc.edu.cn(Y. Zhang); wangfeichem@126.com (F. Wang)
Figure S1 XRD patterns of the Ni$_{0.33}$Co$_{0.67}$CO$_3$ precursors. The purple and green lines represent the standard XRD pattern of CoCO$_3$ and NiCO$_3$, respectively (JCPDS Card No.00-011-0692, JCPDS Card No.00-012-0771).
Figure S2 SEM images of the as-prepared monodispersed Ni$_{0.33}$Co$_{0.67}$CO$_3$ submicrocubes. (a) Overall morphology; (b) low-magnification; (c) close observation; (d) high-magnification.

Figure S3 TGA curves of the Ni$_{0.33}$Co$_{0.67}$CO$_3$ microcubes under air atmosphere.
Figure S4 XPS spectra of (a) survey spectrum, (b) Ni 2p, and (c) Co 2p for the NiCo$_2$O$_4$ porous microcubes.