Electronic Supplementary Information

Sulfur-hydrazine hydrate-based chemical synthesis of Sulfur@graphene composite for Lithium-sulfur batteries

Jianmei Han, a Baojuan Xi, a Zhenyu Feng, a Xiaojian Ma, a Junhao Zhang, b Shenglin Xiong a, and Yitai Qian a,c

a Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China

E-mail: baojuanxi@sdu.edu.cn; qianyt@sdu.edu.cn

b School of Environmental and Chemical Engineering and Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China

c Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, PR China
Fig. S1 Digital graph of (left) hydrazine hydrate and (right) the solution of sulfur-hydrazine hydrate.
Fig. S2 (A,B) FESEM and (C,D) TEM images of S/N-rGO composite. Scale bars: (A-D) 1 μm.
Fig. S3 (A) FESEM image of S/N-rGO composite and (B) the corresponding elemental mapping images collected from the rectangular area marked in panel A. Scale bars: (A) 350 nm, (B) 200 nm.
Fig. S4 EDX spectrum of S@N-rGO composite.
Fig. S5 The galvanostatic charge–discharge profiles of the S@N-rGO (A) and S/N-rGO (B) cathodes between 1.7-2.8 V versus Li$^+$/Li at different rate densities.
Fig. S6 EIS results of S@N-rGO before and after cycling at 0.8 A g\(^{-1}\) for 15 cycles.
Fig. S7 FESEM images of S@N-rGO after 30 cycles at the current density of 0.8 A g\(^{-1}\).
(Scale bar: 200 nm for both)
Fig. S8 The digital photo of N-rGO in a polysulfide solution: (A) fresh Li$_2$S$_4$/DME, (B) Li$_2$S$_4$/DME after stirring with N-rGO for 2 h.
Fig. S9 (A) TGA curve of S@N-rGO with 63%S, (B) Cycling performance of S@N-rGO with 63%S and 76%S for 170 cycles at a current rate of 1C.