Supporting Information

Crystal structure, phase transition and thermal expansion property of NaZr$_2$(PO$_4$)$_3$-SrZr$_4$(PO$_4$)$_6$ solid solutions

Ying Liu1, Maxim S. Molokeev2,3,4, Quanlin Liu1, Zhiguo Xia1*

1The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China

2Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia

3Siberian Federal University, Krasnoyarsk, 660041, Russia

4Department of Physics, Far Eastern State Transport University, Khabarovsk, 680021 Russia
Figure S1. Difference Rietveld plot of Na$_{2+2x}$Sr$_x$Zr$_4$(PO$_4$)$_6$, a. $x = 0$, b. $x = 0.25$, c. $x = 0.3$, d. $x = 0.35$, e. $x = 0.5$, f. $x = 0.75$, g. $x = 1$.
Figure S2. Temperature dependent XRD patterns of Na$_{(2-2x)}$Sr$_x$Zr$_4$(PO$_4$)$_6$, a. $x = 0.5$, b. $x = 0.75$.
<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>B_{iso}</th>
<th>Occ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.2 (1)</td>
</tr>
<tr>
<td>Zr</td>
<td>0</td>
<td>0</td>
<td>0.14566 (3)</td>
<td>0.69 (3)</td>
</tr>
<tr>
<td>P1</td>
<td>0.2918 (2)</td>
<td>0</td>
<td>0.25</td>
<td>0.92 (5)</td>
</tr>
<tr>
<td>O1</td>
<td>0.1830 (3)</td>
<td>-0.0199 (4)</td>
<td>0.1956 (1)</td>
<td>0.98 (5)</td>
</tr>
<tr>
<td>O2</td>
<td>0.1937 (3)</td>
<td>0.1692 (3)</td>
<td>0.0875 (1)</td>
<td>0.98 (5)</td>
</tr>
<tr>
<td>x = 0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.9 (2)</td>
</tr>
<tr>
<td>Sr</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.9 (2)</td>
</tr>
<tr>
<td>Zr</td>
<td>0</td>
<td>0</td>
<td>0.14592 (3)</td>
<td>0.53 (4)</td>
</tr>
<tr>
<td>P1</td>
<td>0.2908 (2)</td>
<td>0</td>
<td>0.25</td>
<td>0.90 (6)</td>
</tr>
<tr>
<td>O1</td>
<td>0.1815 (4)</td>
<td>-0.0218 (4)</td>
<td>0.1952 (1)</td>
<td>1.03 (6)</td>
</tr>
<tr>
<td>O2</td>
<td>0.1946 (3)</td>
<td>0.1697 (3)</td>
<td>0.0880 (1)</td>
<td>1.03 (6)</td>
</tr>
<tr>
<td>x = 0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.8 (2)</td>
</tr>
<tr>
<td>Sr</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.8 (2)</td>
</tr>
<tr>
<td>Zr</td>
<td>0</td>
<td>0</td>
<td>0.14619 (4)</td>
<td>0.66 (5)</td>
</tr>
<tr>
<td>P1</td>
<td>0.2913 (3)</td>
<td>0</td>
<td>0.25</td>
<td>1.00 (7)</td>
</tr>
<tr>
<td>O1</td>
<td>0.1793 (5)</td>
<td>-0.0221 (5)</td>
<td>0.1955 (2)</td>
<td>1.06 (8)</td>
</tr>
<tr>
<td>O2</td>
<td>0.1947 (4)</td>
<td>0.1700 (4)</td>
<td>0.0885 (2)</td>
<td>1.06 (8)</td>
</tr>
<tr>
<td>x = 0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.2 (5)</td>
</tr>
<tr>
<td>Na1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.2 (5)</td>
</tr>
<tr>
<td>Na2</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>4 (1)</td>
</tr>
<tr>
<td>Zr1</td>
<td>0</td>
<td>0</td>
<td>0.1468 (2)</td>
<td>0.6 (1)</td>
</tr>
<tr>
<td>Zr2</td>
<td>0</td>
<td>0</td>
<td>0.6456 (2)</td>
<td>0.8 (1)</td>
</tr>
<tr>
<td>P1</td>
<td>0.2927 (7)</td>
<td>0.0018 (14)</td>
<td>0.2529 (5)</td>
<td>0.92 (8)</td>
</tr>
<tr>
<td>O1</td>
<td>0.1853 (17)</td>
<td>-0.0030 (14)</td>
<td>0.1961 (6)</td>
<td>0.84 (9)</td>
</tr>
<tr>
<td>O2</td>
<td>0.0420 (14)</td>
<td>-0.1728 (17)</td>
<td>0.6952 (5)</td>
<td>0.84 (9)</td>
</tr>
<tr>
<td>O3</td>
<td>0.198 (2)</td>
<td>0.166 (2)</td>
<td>0.0893 (7)</td>
<td>0.84 (9)</td>
</tr>
<tr>
<td></td>
<td>O4</td>
<td>-0.176 (2)</td>
<td>-0.1921 (19)</td>
<td>0.5889 (7)</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>x = 0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.3 (3)</td>
</tr>
<tr>
<td>Na1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.3 (3)</td>
</tr>
<tr>
<td>Na2</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>5.9 (15)</td>
</tr>
<tr>
<td>Zr1</td>
<td>0</td>
<td>0</td>
<td>0.1483 (2)</td>
<td>0.7 (1)</td>
</tr>
<tr>
<td>Zr2</td>
<td>0</td>
<td>0</td>
<td>0.6450 (2)</td>
<td>1.5 (1)</td>
</tr>
<tr>
<td>P1</td>
<td>0.2956 (7)</td>
<td>0.008 (1)</td>
<td>0.2534 (4)</td>
<td>1.3 (1)</td>
</tr>
<tr>
<td>O1</td>
<td>0.178 (2)</td>
<td>0.000 (2)</td>
<td>0.1962 (6)</td>
<td>0.7 (1)</td>
</tr>
<tr>
<td>O2</td>
<td>0.051 (15)</td>
<td>-0.175 (2)</td>
<td>0.6962 (5)</td>
<td>0.7 (1)</td>
</tr>
<tr>
<td>O3</td>
<td>0.186 (2)</td>
<td>0.166 (2)</td>
<td>0.0843 (5)</td>
<td>0.7 (1)</td>
</tr>
<tr>
<td>O4</td>
<td>-0.172 (2)</td>
<td>-0.204 (2)</td>
<td>0.5972 (6)</td>
<td>0.7 (1)</td>
</tr>
</tbody>
</table>

|x = 0.75|
Sr1	0	0	0	3.0 (2)	0.645 (8)	1
Na1	0	0	0	3.0 (2)	0.355 (8)	1
Na2	0	0	0.5	4 (2)	0.355 (7)	1
Zr1	0	0	0.14906 (9)	0.56 (7)	1	
Zr2	0	0	0.6447 (1)	1.13 (7)	1	
P1	0.2926 (5)	0.0071 (7)	0.2522 (2)	1.11 (7)	1	
O1	0.185 (1)	-0.003 (1)	0.1973 (4)	0.87 (9)	1	
O2	0.054 (1)	-0.164 (1)	0.6975 (3)	0.87 (9)	1	
O3	0.1791 (9)	0.1718 (9)	0.0869 (3)	0.87 (9)	1	
O4	-0.169 (1)	-0.2155 (9)	0.5961 (4)	0.87 (9)	1	

|x = 1|
Sr1	0	0	0	3.16 (6)	1	
Zr1	0	0	0.14949 (5)	0.57 (4)	1	
Zr2	0	0	0.64503 (5)	0.58 (4)	1	
P1	0.2909 (3)	0.0071 (4)	0.2514 (2)	0.87 (5)	1	
O1	0.1914 (6)	-0.0089 (6)	0.1963 (3)	0.94 (6)	1	
O2	0.0563 (7)	-0.1530 (6)	0.6982 (2)	0.94 (6)	1	
O3	0.1816 (6)	0.1785 (6)	0.0884 (2)	0.94 (6)	1	
O4	-0.1600 (7)	-0.2133 (6)	0.5967 (2)	0.94 (6)	1	
Table 2S. Main bond lengths (Å) of Na$_{2-2x}$Sr$_x$Zr$_4$(PO$_4$)$_6$

<table>
<thead>
<tr>
<th></th>
<th>$x = 0$</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Na—O2</td>
<td>2.561 (3)</td>
<td>P1—O1</td>
</tr>
<tr>
<td></td>
<td>Zr—O1</td>
<td>2.050 (3)</td>
<td>P1—O2i</td>
</tr>
<tr>
<td></td>
<td>Zr—O2</td>
<td>2.084 (3)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$x = 0.25$</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Na/Sr)—O2</td>
<td>2.578 (3)</td>
<td>P1—O1</td>
</tr>
<tr>
<td></td>
<td>Zr—O1</td>
<td>2.041 (3)</td>
<td>P1—O2i</td>
</tr>
<tr>
<td></td>
<td>Zr—O2</td>
<td>2.088 (3)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$x = 0.3$</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Na/Sr)—O2</td>
<td>2.592 (4)</td>
<td>P1—O1</td>
</tr>
<tr>
<td></td>
<td>Zr—O1</td>
<td>2.027 (4)</td>
<td>P1—O2i</td>
</tr>
<tr>
<td></td>
<td>Zr—O2</td>
<td>2.086 (4)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$x = 0.35$</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Na1/Sr1)—O3</td>
<td>2.610 (15)</td>
<td>Zr2—O4</td>
</tr>
<tr>
<td></td>
<td>Na2—O4</td>
<td>2.605 (15)</td>
<td>P1—O1</td>
</tr>
<tr>
<td></td>
<td>Zr1—O1</td>
<td>1.994 (12)</td>
<td>P1—O2i</td>
</tr>
<tr>
<td></td>
<td>Zr1—O3</td>
<td>2.090 (15)</td>
<td>P1—O3ii</td>
</tr>
<tr>
<td></td>
<td>Zr2—O2</td>
<td>2.074 (13)</td>
<td>P1—O4iii</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$x = 0.5$</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Na2/Sr1)—O3</td>
<td>2.49 (1)</td>
<td>Zr2—O4</td>
</tr>
<tr>
<td></td>
<td>Na2—O4</td>
<td>2.79 (1)</td>
<td>P1—O1</td>
</tr>
<tr>
<td></td>
<td>Zr1—O1</td>
<td>1.91 (1)</td>
<td>P1—O2i</td>
</tr>
<tr>
<td></td>
<td>Zr1—O3</td>
<td>2.14 (1)</td>
<td>P1—O3ii</td>
</tr>
<tr>
<td></td>
<td>Zr2—O2</td>
<td>2.15 (1)</td>
<td>P1—O4iii</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$x = 0.75$</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Na1/Sr1)—O3</td>
<td>2.535 (7)</td>
<td>Zr2—O4</td>
</tr>
<tr>
<td></td>
<td>Na2—O4</td>
<td>2.815 (8)</td>
<td>P1—O1</td>
</tr>
<tr>
<td></td>
<td>Zr1—O1</td>
<td>1.980 (8)</td>
<td>P1—O2i</td>
</tr>
<tr>
<td></td>
<td>Zr1—O3</td>
<td>2.106 (7)</td>
<td>P1—O3ii</td>
</tr>
<tr>
<td></td>
<td>Zr2—O2</td>
<td>2.108 (8)</td>
<td>P1—O4iii</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$x = 1$</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sr1—O3</td>
<td>2.592 (5)</td>
<td>P1—O1</td>
</tr>
<tr>
<td></td>
<td>Zr1—O1</td>
<td>2.026 (5)</td>
<td>P1—O2i</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
<td>Symmetry Code</td>
<td>Refinement Details</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>---------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Zr1—O3</td>
<td>2.119 (5)</td>
<td>P1—O3<i></td>
<td>1.536 (4)</td>
</tr>
<tr>
<td>Zr2—O2</td>
<td>2.052 (5)</td>
<td>P1—O4<i></td>
<td>1.552 (5)</td>
</tr>
<tr>
<td>Zr2—O4</td>
<td>2.019 (5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry code for $x = 0, 0.25, 0.3$: (i) $-x+2/3, -y+1/3, -z+1/3$.

Symmetry code for $x = 0.35, 0.5, 0.75, 1$: (i) $x-y, x, -z+1$; (ii) $-x+2/3, -y+1/3, -z+1/3$; (iii) $-x+y+1/3, -x-1/3, z-1/3$.