Supporting Information

Aggregation-induced emission nanoparticles as photosensitizer for two-photon photodynamic therapy

Nuernisha Alifu, Xiaobiao Dong, Dongyu Li, Xianhe Sun, Abudureheman Zebibula, Deqing Zhang, Guanxin Zhang, Jun Qian

aState Key Laboratory of Modern Optical Instrumentations, Center for Optical and Electromagnetic Research; JORCEP (Sino-Swedish Joint Research Center of photonics) Zhejiang University, Hangzhou 310058, China
bBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
cDepartment of Urology, Sir Run-Run Shaw Hospital College of Medicine, Zhejiang University, Hangzhou 310016, China

Corresponding Authors
*E-mail: qianjun@zju.edu.cn; gxzhang@iccas.ac.cn

Calculation of TPE-red molecules in each TPE-red-PSMA nanoparticle

0.2 mg of TPE-red and 0.1 mg of PSMA were used when preparing the TPE-red-PSMA nanoparticles with the weight ratio of TPE-red to PSMA of 2:1. Assuming there was no chemicals loss during the preparation, the total concentration of TPE-red-PSMA nanoparticles in 1 mL water dispersion should be 0.3 mg/mL. As the TPE-red-PSMA nanoparticles dispersed uniformly and stably in the water, without floating and sinking, the density of them could be equivalent to the density of the water (1 g/cm³). The total volume of the TPE-red-PSMA nanoparticles in water dispersion (1 mL) was therefore 0.3×10⁻³ cm³. According to the DLS result (Fig. 2a, page 2), the average diameter of TPE-red-PSMA nanoparticle was 64.1 nm, so the average volume of the nanoparticles was 1.38×10⁵ nm³. Thus, the number of the TPE-red-PSMA nanoparticles in 1 mL water was 0.3×10⁻³ cm³/1.38×10⁵ nm³=2.17×10¹², or 0.36×10⁻¹¹ mol (Avogadro constant = 6.022×10²³ mol⁻¹). In addition, 0.2 mg TPE-red (molecular weight = 520) contained 3.846×10⁻⁷ mol molecules. Finally, the number of TPE-red molecules in each TPE-red-PSMA nanoparticle can be calculated as 3.846×10⁻⁷ mol/0.36×10⁻¹¹ mol=1.068×10⁵.
Fig. S1 (a) Absorbance spectra of TPE-red-PSMA nanoparticles with various weight ratios. (b) The peak fluorescence intensities of TPE-red-PSMA nanoparticles in different weight ratios.

Fig. S2 (a) Photographs of the aqueous dispersion of HPPH-PSMA, Ce6-PSMA, Nile-red-PSMA and TPE-red-PSMA nanoparticles with the same concentration of encapsulated dyes/photosensitizers and the same weight ratio of dyes/photosensitizers to PSMA, under the irradiation of daylight (a) and ultraviolet lamp (b).

Fig. S3 (a) Decay curves of the absorbance (at 375 nm) upon 1040 nm-fs irradiation for 40 min in the case of ABDA (in blue), TPE-red-PSMA nanoparticles (in red) and ABDA mixed with TPE-red-PSMA nanoparticles (in black). (b) Absorption spectra of the mixture containing ABDA and TPE-red-PSMA nanoparticles irradiated by 1040 nm-fs for different time. Insert: The enlarged changes of the absorbance at 375 nm.
Fig. S4 Schematic illustration of the setup for two-photon fluorescence imaging and *in vitro* two-photon excited PDT.

Fig. S5 HeLa cells treated with TPE-red-PSMA nanoparticles (but without DCF-DA) under 1040 nm-fs excitation (60 mW) in the (a) red channel and (c) green channel. HeLa cells treated without TPE-red-PSMA nanoparticles (but with DCF-DA) under 1040 nm-fs excitation (60 mW) in the (b) red channel and (d) green channel. Scale bar is 50 μm.
Fig. S6 Two-photon excited apoptosis rate measurement of HeLa cells. Cells were treated with both TPE-red-PSMA nanoparticles and Annexin V-FITC, followed by 1040 nm-fs excitation (60 mW) for 120 s. (a) Two-photon fluorescence from TPE-red-PSMA nanoparticles in the red channel. (b) Two-photon fluorescence from Annexin V-FITC in the green channel. (c) Overlap of the red and green channels. Scale bar is 50 μm.