Glutamic acid-modified cellulose fibrous composite for adsorption of heavy metal ions from single and binary solutions

Meng Li, a Zhijiang Liu, a Lidong Wang, a Tony D. James, b Hui-Ning Xiao*a and Wei-Hong Zhu*c

a Department of environmental science and technology, North China Electric Power University, Baoding, 071003, P.R. China. Email: huiningxiao@hotmail.com
b Department of Chemistry, University of Bath, Claverton Down Fax: 44 1225 386231; Tel: 44 1225 386627
c Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China. Email: whzhu@ecust.edu.cn

Table of contents

1. Determination of COOH content
2. FTIR spectra
3. Adsorption capacity comparison of unmodified cellulose and GMC
4. The pseudo-first-order kinetic model, the pseudo-second-order kinetic model and intraparticle diffusion kinetic model curves fitted for Cu^{2+} and Hg^{2+} adsorption onto GMC
5. Langmuir isotherm model and Freundlich isotherm model curves of Cu^{2+} and Hg^{2+} adsorption onto GMC
1. Determination of COOH content

Figure S1. Electric conductivity titration ([NaOH]= 0.061mol·L⁻¹, \(V_{NaOH, equilibrium} = 5.95 \text{ mL}, m_{GMC} = 0.3 \text{ g}\). The COOH was calculated to be 1.2 mmol·g⁻¹.

2. FTIR spectra
Figure S2. FT-IR spectra of cellulose, TEMPO oxidised cellulose (1.2 mmol·g⁻¹ COOH), Glutamic modified cellulose and Cu(II)-loaded GMC, Hg(II)-loaded GMC.

3. Adsorption capacity comparison of unmodified cellulose and GMC
Figure S3. The adsorption capacity comparison of unmodified cellulose and GMC. Conditions: pH = 5, both unmodified cellulose and GMC dosage were 2.0 g L\(^{-1}\), and t = 30 mins, \([\text{Cu}^{2+}] = [\text{Hg}^{2+}] = 50\) ppm.

4. The pseudo-first-order kinetic model, the pseudo-second-order kinetic model
and intraparticle diffusion model curves fitted for Cu$^{2+}$ and Hg$^{2+}$ adsorption onto GMC

4.1 Pseudo-first-order kinetic model

\[
\ln(Q_e - Q) = \ln Q_e - kt
\]

(1)

where \(Q_e\) and \(Q\) are the amount of solute adsorbed per unit adsorbent at equilibrium and time \(t\), respectively. \(k\) is the rate constant for the pseudo-first-order kinetics.

Figure S4. Pseudo-first order kinetic model for Cu$^{2+}$ adsorption

Figure S5. Pseudo-first order kinetic model for Hg$^{2+}$ adsorption

4.2 pseudo-second-order kinetic model
\[\frac{t}{Q} = \frac{1}{k Q_e^2} + \frac{t}{Q_e} \]

(2)

where \(Q_e \) and \(Q \) are the amount of solute adsorbed per unit adsorbent at equilibrium and time \(t \), respectively. \(k \) is the rate constant for the pseudo-second-order kinetics.

Figure S6. Pseudo-second order kinetic model for Cu\(^{2+}\) adsorption

Figure S7. Pseudo-second order kinetic model for Hg\(^{2+}\) adsorption

4.3 Intraparticle diffusion model

The rate constant of intraparticle diffusion (\(k_{\text{di}} \)) at the stage \(i \) was given by the
equation:

\[Q_t = k_{d1} t^{1/2} + C_1 \] \hspace{1cm} (3)

Where \(Q_t \) is the amount of \(\text{Cu}^{2+}/\text{Hg}^{2+} \) absorbed on bioadsorbent, \(t^{1/2} \) is the square root of adsorption time, and \(C_1 \) is the intercept at different stage.

Fig. S8 Intraparticle diffusion model for adsorption of \(\text{Cu}^{2+} \) and \(\text{Hg}^{2+} \) on GMC at pH=5 and 25 °C

<table>
<thead>
<tr>
<th>C_0/Metal</th>
<th>(k_{d1}) (\text{mg} \cdot \text{L}^{-1})</th>
<th>(C_1) (\text{mg} \cdot (\text{g} \cdot \text{t}^{1/2})^{-1})</th>
<th>(k_{d2}) (\text{mg} \cdot (\text{g} \cdot \text{t}^{1/2})^{-1})</th>
<th>(C_2)</th>
<th>((R^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>50- (\text{Cu}^{2+})</td>
<td>6.24</td>
<td>-3.46</td>
<td>0.84</td>
<td>0.16</td>
<td>22.25</td>
</tr>
<tr>
<td>50- (\text{Hg}^{2+})</td>
<td>12.93</td>
<td>-0.27</td>
<td>0.99</td>
<td>0.02</td>
<td>22.8</td>
</tr>
</tbody>
</table>

5. Langmuir isotherm model and Freundlich isotherm model curves of \(\text{Cu}^{2+} \) and
Hg$^{2+}$ adsorption onto GMC

5.1 Langmuir isotherm model

\[
\frac{c_e}{Q_e} = \frac{1}{Q_m \times b} + \frac{c_e}{Q_m}
\]

(4)

where Q_m and b are the Langmuir constants related to maximum adsorption capacity and equilibrium constant or energy of adsorption, respectively. Q_e is the observed adsorption capacity (mg/g) and C_e is the equilibrium concentration (mg/L).

![Figure S9. Langmuir adsorption isotherm of GMC for Cu$^{2+}$ adsorption](image)

![Figure S10. Langmuir adsorption isotherm of GMC for Hg$^{2+}$ adsorption](image)

5.2 Freundlich isotherm model
\[
\ln Q_e = \ln K_f + \frac{1}{n} \ln C_e
\]
(5)

where \(n \) is adsorption strength, \(K_f \) is adsorption capacity, \(Q_e \) is the observed adsorption capacity (mg/g) and \(C_e \) is the equilibrium concentration (mg/L).

Figure S11. Freundlich adsorption isotherm of GMC for Cu\(^{2+}\) adsorption

Figure S12. Freundlich adsorption isotherm of GMC for Hg\(^{2+}\) adsorption