Electronic Supplementary Information

Tomoki Ogoshia,b,*, Takuya Furutaa, Yukie Hamadaa, Takahiro Kakutaa and Tada-aki Yamagishia

aGraduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa, 920-1192, Japan
bWPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, 920-1192, Japan

Table of Contents

Figs. S1 and S2 1H and 13C NMR spectra of \textit{1d} in CDCl\textsubscript{3} S2
Fig. S3 1H NMR spectra of \textit{1d} in various concentrations in CDCl\textsubscript{3} S3
Fig. S4 Eyring plots in solid state self-inclusion complexation S3
Fig. S5 DSC heating curves of a mixture of \textit{1s} and \textit{1d} (\textit{1s/1d} = 85/15) S4
Fig. S6 1H NMR spectra of a mixture of \textit{1s} and \textit{1d} (\textit{1s/1d} = 85/15) in various concentrations in CDCl\textsubscript{3} S5
Fig. S7 COSY study of a mixture of \textit{1s} and \textit{1d} (\textit{1s/1d} = 85/15) in CDCl\textsubscript{3} S5-S6
Fig. S8 Eyring plots in de-threading process in CDCl\textsubscript{3} S7
Figs. S9-S11 1H NMR spectra after heating of \textit{1} in the solid state at 100 °C for 48 h, dissolving the solid sample in deuterated solvents, and obtaining the spectrum after 3 min and 24 h. S7-S8
Fig. S12 Calculated structures of the guest part of \textit{1}. S9
Fig. S1 1H NMR spectrum of 1d in CDCl$_3$ at 25 °C.

Fig. S2 13C NMR spectrum of 1d in CDCl$_3$ at 25 °C.
Fig. S3 1H NMR spectra of 1d in various concentrations in CDCl$_3$.

Fig. S4 Eyring plots in solid state self-inclusion complexation.

\[
\ln\left(\frac{hk}{k_B T}\right) = -\frac{\Delta G^\ddagger}{RT} \quad \text{and} \quad k = \ln\frac{2}{t_{1/2}}
\]

\[
\Delta G^\ddagger = \Delta H^\ddagger - T\Delta S^\ddagger
\]

ΔH^\ddagger : Activation Free Energy

\[
\ln\left(\frac{hk}{k_B T}\right) = -\frac{\Delta H^\ddagger}{R} \frac{1}{T} + \frac{\Delta S^\ddagger}{R}
\]

$\Delta H^\ddagger = 70.8$ (kJ/mol)

$\Delta S^\ddagger = -124.2$ (J/mol · K)
Fig. S5 DSC heating curves of a mixture of 1s and 1d (1s/1d = 85/15) in (a) first and (b) second heating processes. Therefore, the endothermic peak observed in the first heating of 1d (Fig. 3c) resulted from formation of 1s.
Fig. S6 1H NMR spectra of a mixture of 1s and 1d (1s/1d = 85/15) in various concentrations in CDCl$_3$.
Fig. S7 COSY study of a mixture of 1s and 1d (1s/1d = 85/15) in CDCl₃.
Fig. S8 Eyring plots in de-threading process in CDCl$_3$.

\[\ln\left(\frac{h k}{k_B T}\right) = \frac{-\Delta G^\ddagger}{RT} \quad k = \frac{\ln 2}{t_{\frac{1}{2}}} \]
\[\Delta G^\ddagger = \Delta H^\ddagger - T\Delta S^\ddagger \]
\[t_{\frac{1}{2}} : \text{Half-Life Time} \]
\[\Delta G^\ddagger : \text{Activation Free Energy} \]
\[\ln\left(\frac{h k}{k_B T}\right) = \frac{-\Delta H^\ddagger}{R} \frac{1}{T} + \frac{\Delta S^\ddagger}{R} \]
\[\Delta H^\ddagger = 72.3 \text{ (kJ/mol)} \]
\[\Delta S^\ddagger = -82.5 \text{ (J/mol} \cdot \text{K)} \]

Fig. S9 1H NMR spectra after heating of 1 in the solid state at 100 °C for 48 h, dissolving the solid sample in CD$_2$Cl$_2$ and obtaining the spectrum after (a) 3 min and (b) 24 h. The spectra changed by storing a mixture of 1s and 1d (1s/1d = 85/15) in CD$_2$Cl$_2$ at 25 °C, indicating that 1s was slowly converted to 1d in CD$_2$Cl$_2$.
Fig. S10 1H NMR spectra after heating of 1 in the solid state at 100 °C for 48 h, dissolving the solid sample in deuterated 1,1,2,2-tetrachloroethane and obtaining the spectrum after (a) 3 min and (b) 24 h. The spectra did not change by storing a mixture of 1s and 1d ($1s/1d = 85/15$) in deuterated 1,1,2,2-tetrachloroethane at 25 °C, indicating that 1s was not converted to 1d in deuterated 1,1,2,2-tetrachloroethane.

Fig. S11 1H NMR spectra after heating of 1 in the solid state at 100 °C for 48 h, dissolving the solid sample in deuterated cyclohexane and obtaining the spectrum after (a) 3 min and (b) 24 h. The spectra did not change by storing a mixture of 1s and 1d ($1s/1d = 85/15$) in deuterated cyclohexane at 25 °C, indicating that 1s was not converted to 1d in deuterated cyclohexane.
Fig. S12 (a) Chemical structures, (b,c) optimized structures and (d) calculated electron potential profiles (DFT calculations, B3LYP/6-31G(d,p)) of the guest part of 1 and alkyl chains as a reference.