Supporting information for:

Remarkable Water-Soluble ZnO Nanocrystals: From ‘Click’ Functionalization to Supramolecular Aggregation Enhanced Emission Phenomenon

Agnieszka Grala,† Małgorzata Wolska-Piekiewicz,‡ Zbigniew Wróbel,† Tomasz Ratajczyk,† Joanna Kuncewicz§ and Janusz Lewiński†,‡,*

† Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
‡ Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
§ Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland.

* The corresponding author: lewin@ch.pw.edu.pl

Table of Contents:

1. STEM and HRTEM analysis .. S2
2. Size distribution of ZnO NCs ... S4
3. Dynamic Light Scattering ... S4
4. NMR spectroscopy .. S6
 4.1 1H NMR spectra for ZnO-una2 NCs .. S6
 4.2 1H NMR spectra for hex-H and ZnO-hex1 NCs .. S7
5. FTIR spectroscopy .. S8
6. Powder X-ray diffraction studies .. S9
7. Optical spectroscopy ... S9
8. PL lifetimes measurements .. S10
1. STEM and HRTEM analysis

Figure S1. STEM and HRTEM micrographs of ZnO-una1 NCs (a-c) and ZnO-una2 NCs (d-f) prepared from samples dissolved in DMSO.
Figure S2. STEM and HRTEM micrographs of ZnO-\textit{hex} 1 NCs (in DMSO) (a-e) and ZnO-\textit{hex} 2 NCs (in H\textsubscript{2}O) (f-k).
2. Size distribution of ZnO NCs

![Size distribution of ZnO NCs](image)

Figure S3. Size distributions of a) ZnO-hex1 NCs and b) ZnO-hex2 NCs.

3. Dynamic Light Scattering

![Dynamic Light Scattering](image)

Figure S4. DLS data: size distribution by number and raw correlation data for ZnO-hex1 (a-b) NCs and ZnO-hex2 NCs (c-d) in DMSO, respectively.
Figure S5. The ZnO-hex2 NCs size distribution by number: a) in 50% DMSO/50% H₂O (v/v), b) 50% DMSO/50% H₂O (v/v) after 24 h, c) 10% DMSO/90% H₂O (v/v), and d) 10% DMSO/90% H₂O (v/v) after 5 days. The above data present three individual repeats of the same sample.
4. NMR spectroscopy

4.1 1H NMR spectra for ZnO-una2 NCs

Figure S6. 1H NMR spectra of ZnO-una2 NCs after the CuAAC process, the most distinctive signals (ppm) for OH-terminated triazole molecule: 7.81 (=CH-N), 4.60 (-OH), 4.45, 3.78, 3.47, 3.36; 2.74 (C≡CH from unreacted una acid), *-DMSO-d$_6$, # - catalyst residue, RT.
4.2 1H NMR spectra for hex-H and ZnO-hex1 NCs

Figure S7. 1H NMR spectra of a) ZnO-hex1 NCs and b) hex-H, *-DMSO-d$_6$, RT.
5. FTIR spectroscopy

Figure S8. FTIR spectra for ZnO-una1 NCs (dark grey line) and ZnO-una2 NCs (grey line), respectively.

Figure S9. FTIR spectra for ZnO-hex1 NCs (dark grey line) and ZnO-hex2 NCs (grey line), respectively.
6. Powder X-ray diffraction studies

For XRD data for ZnO-una1 NCs see: *Chem. Commun.*, 2016, 52, 7340-7343 and the Supplementary Information therein).

![Figure S10](image)

Figure S10. The powder X-ray diffraction patterns for ZnO-hex1 NCs (black line) and ZnO-hex2 (red line).

7. Optical spectroscopy

![Figure S11](image)

Figure S11. a) Absorption spectra of ZnO-hex1 NCs (before the CuAAC reaction) and ZnO-hex2 NCs (after the CuAAC) in DMSO; b) absorption spectrum of ZnO-una1 NCs in DMSO.
8. PL lifetimes measurements

The PL lifetimes were measured at 20 °C using a single-photon counting system UV-VIS-NIR Fluorolog 3 Spectro-fluorimeter (Horiba Jobin Yvon). The solid-state pulsed NanoLED ($\lambda_{\text{max}} = 336$ nm) was used as an excitation source. PL decay signals with a nanosecond resolution were obtained using photomultiplier tube. The instrument response function was acquired with a LUDOX scatterer. The obtained luminescence decay curves were fitted using four-exponential function.
Figure S13. Photoluminescence decays taken for ZnO-hex2 NCs in DMSO and in the mixture of 50% DMSO/50% H₂O (v/v).

a)

![Graph a](image1)

b)

![Graph b](image2)

Table:

<table>
<thead>
<tr>
<th>ZnO-hex2 in DMSO</th>
<th>(\tau) (lifetime)</th>
<th>S.Dev</th>
<th>a (amplitude)</th>
<th>Normalized a</th>
<th>Relative contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,80E-08</td>
<td>1,80E-09</td>
<td>0,714</td>
<td>0,655</td>
<td>0,116</td>
</tr>
<tr>
<td>2</td>
<td>5,39E-08</td>
<td>2,84E-09</td>
<td>0,253</td>
<td>0,232</td>
<td>0,123</td>
</tr>
<tr>
<td>3</td>
<td>4,54E-07</td>
<td>1,58E-08</td>
<td>0,090</td>
<td>0,083</td>
<td>0,370</td>
</tr>
<tr>
<td>4</td>
<td>1,30E-06</td>
<td>2,27E-08</td>
<td>0,033</td>
<td>0,030</td>
<td>0,390</td>
</tr>
</tbody>
</table>

c)

![Graph c](image3)

d)

![Graph d](image4)

Table:

<table>
<thead>
<tr>
<th>ZnO-hex2 in DMSO/H₂O</th>
<th>(\tau) (lifetime)</th>
<th>S.Dev</th>
<th>a (amplitude)</th>
<th>Normalized a</th>
<th>Relative contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5,07E-09</td>
<td>1,85E-10</td>
<td>1,187</td>
<td>0,683</td>
<td>0,150</td>
</tr>
<tr>
<td>2</td>
<td>1,99E-08</td>
<td>5,42E-10</td>
<td>0,435</td>
<td>0,250</td>
<td>0,216</td>
</tr>
<tr>
<td>3</td>
<td>1,28E-07</td>
<td>3,44E-09</td>
<td>0,083</td>
<td>0,048</td>
<td>0,266</td>
</tr>
<tr>
<td>4</td>
<td>4,46E-07</td>
<td>9,57E-09</td>
<td>0,033</td>
<td>0,019</td>
<td>0,368</td>
</tr>
</tbody>
</table>