Asymmetric Total Synthesis of (–)-δ-Lycorane

Junliang Wang,^{a,b} Jianneng Li,^a Cong Dong,^a Jun Lin^{a,b,*} and Kun Wei^{a,*}

^a School of Chemical Science and Technology, Yunnan University.

^b Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education), School of Chemical

Science and Technology, Yunnan University, Kunming, 650091, P. R. China.

E-mail: weikun@ynu.edu.cn, linjun@ynu.edu.cn.

Supporting Information

Experimental details and Copies of ¹H and ¹³C spectra of new compounds

Table of Contents

- 1. General Experimental.
- 2. Experimental Procedures and Spectroscopic Data of the Synthesized Compound.
- 3. NMR Spectra for the Synthesized Compounds.
- 4. X-Ray Crystallographic Data for the Compound 4a.
- 5. HPLC Spectra for the Synthesized Compound 4.

1. General Experimental: Melting points were obtained on a XT-4 melting-point apparatus and were uncorrected. Optical rotations was measured in CHCl₃ solution at 20 °C on a UV-210A spectrometer. The infrared (IR) spectra were measured on a Nicolet Avatar 360 FTIR spectrometer with 4 cm-1 resolution and 32 scans between wavenumber of 4000 cm-1and 400 cm-1. Samples were prepared as KBr disks with 1mg of samples in 100mg of KBr. Proton nuclear magnetic resonance (¹H-NMR) spectra were recorded on a BrukerAvance 400 or 500 spectrometer at 400 or 500 MHz. Carbon-13 nuclear magnetic resonance (¹³C-NMR) was recorded on BrukerAvance 400 or 500 spectrometer at 100or 125 MHz.Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internalstandard in CDCl₃ solution. High resolution mass spectral (HRMS) data were obtained with an ionization mode of ESI.Enantiomericratio was determined by HPLC analysis on a chiral column in comparison with authentic racemate, using a Daicel Chiralpak OD-H Column (250 × 4.6 mm), UV detection was monitored at 254 nm. All new compounds were characterized by IR, ¹H-NMR, ¹³C-NMR and HRMS. The known compounds were characterized by ¹H-NMR and ¹³C-NMR. Column chromatography was performed on silica gel (200-300 mesh) eluting with ethyl acetate/p troleum ether. TLC was performed on glass-backed silica plates. UV light, I₂ and solution of potassium permanganate were used to visualize products. Solvents were freshly distilled under nitrogen atmosphere before use using the normal protocols. (E)-ethyl-5-(benzo[d][1,3]dioxol-5-yl) -3oxopent-4-enoate 3^1 and (E)-*tert*-butyldimethyl((4-nitrobut-3-en-1-yl)oxy)silane 2^2 were prepared according to reported procedure. Cinchona-derived catalysts A^3 , B^3 and C^4 were synthesized by following the published procedures. All the other reagents were purchased from commercial sources and used as received.

- (1) (a) A. G. Myers, R. Glatthar, M. Hammond, P. M. Harrington, E. Y. Kuo, J. Liang, S. E. Schaus, Y. S. Wu, and J. N. Xiang, *J. Am. Chem. Soc.*, 2002, **124**, 5380; (b) A. G. Myers, V. Subramanian and M. Hammond, *Tetrahedron Lett.*, 1996, **37**, 587.
- (2) A. Nakamura, S. Lectard, D. Hashizume, Y. Hamashima, and M. Sodeoka. J. Am. Chem. Soc., 2010, 132, 4036.
- (3) B. Vakulya, S. Varga, A. Csámpai and T. Soós, Org. Lett., 2005, 7, 1967.
- (4) J. P. Malerich, K. Hagihara and V. H. Rawal, J. Am. Chem. Soc., 2008, 130, 14416.

2. Experimental Procedures and Spectroscopic Data of the Synthesized Compounds

Synthesis of Compound 3

Carbonyldiimidazole (CDI) (10.1 g, 62.4 mmol, 1.2 equiv) was added to a solution of the carboxylic acid 1(10.0 g, 52.0 mmol, 1 equiv) in dry THF (300 mL) at rt for 8 h. At the same time, a separate flask was charged with ethyl hydrogen malonate (14.9 g, 0.130 mol, 1.2 equiv) and dry

THF and cooled to 0 °C. Magnesium ethoxide (7.15 g, 0.062 mmol, 1.2 equiv) was added portionwise. After completion of the addition, the reaction mixture was warmed to rt and stirred for an additional 3 h. The reaction mixture was concentrated in vacuo to afford a gray solid, which was powered using a stainless steel spatula. At the appropriate time (after the acylimidazole solution had been allowed to react for 8 h), the acylimidazole solution was cooled to 0 $^{\circ}$ C, and the magnesium monoethylmalonate was added over a ten-minute period. Upon completion of the addition, the reaction mixture was warmed to 65 °C and stirred for an additional 2 h. The reaction mixture was quenched with some water, The aqueous layer was acidified to pH 1 with concentrated hydrochloric acid. The aqueous layer was extracted with DCM (two 100 mL portion), and the combined organics was dried over sodium sulfate, and concentrated, Purification of the residue by flash column chromatography (10% ethyl acetate in hexanes) afforded the β -keto ester (12.0 g, 90%) as a pale yellow oil. Compound **3** ¹H-NMR (400 MHz, CDCl₃), δ (ppm): 12.00 (s, 0.4 H, enol OH), 7.52 (d, 1H, J = 16.0 Hz, C5 keto), 7.35 (t, J = 15.6, 1H, C6' keto), 7.05 (complex, 1.4H, C2' keto, C2' enol), 7.03 (d, J = 12.8, 1H, C5' keto), 6.97 (d, J = 8.0 Hz, 0.5H, C5' enol), 6.83-6.78 (m, 1.5H, C6', C5 and C2 enol), 6.65 (d, J = 16.0 Hz, 1H, C4 keto), 6.27 (d, J = 16 Hz, 0.5H, C4 enol), 6.02 (s, 2H, C7' keto), 5.98 (s, 1H, C7' enol), 4.22 (complex, 3H, COOCH₂CH₃, keto and enol), 3.66 (s, 2H, C2 keto), 1.29 (complex, 4.7H, COOCH₂CH₃ keto and enol); ¹³C-NMR (100 MHz, CDCl₃), δ (ppm): 191.7, 172.8, 169.4, 167.5, 150.2, 148.8, 148.4, 148.2, 144.4, 136.4, 129.8, 128.4, 125.4, 123.5, 123.2, 119.9, 108.6, 108.5, 106.6, 106.1, 101.7, 101.4, 91.3, 77.3, 77.0, 76.7, 61.4, 60.1, 47.6, 14.2, 14.1.

Synthesis of Compound 2

To a solution of 3-(*tert*-butyldimethylsilanoxy)propionaldehyde (2.34 g, 12.4 mmol) and nitromethane (3.4 mL, 62.2 mmol) was added triethylamine (516 μ L, 3.72 mmol) dropwise at room temperature. The reaction mixture was stirred for 5 h at room temperature then filtered through a pad of SiO₂ (*n*-hexane/ethyl acetate = 5:1). The filtrate was concentrated under reduced pressure to yield the crude nitro-alcohol, which was used in the next step without further purification. The crude nitro-alcohol was dissolved in dichloromethane (20 mL) at 0 °C. Methanesulfonyl chloride (1.92 mL, 24.8 mmol) and triethylamine (3.4 mL, 24.8 mmol) were added successively and the mixture was stirred at 0 °C for 10 min and at room temperature for 15 min. Brine (20 mL) was added and the aqueous phase was separated. The aqueous layer was extracted with dichloromethane (15 mL x 3). The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (SiO2, n-hexane/ethyl acetate = 50:1) to give 2 in 40% yield as a yellow oil. Compound 4 ¹H-NMR (500 MHz, CDCl₃), δ (ppm): 7.08-7.03 (m, 1H), 6.82 (d, J = 13.4, 1H), 3.54 (t, J = 5.9, 2H), 2.22 (m, 2H), 0.65 (s, 9H), -0.17 (s, 6H); ¹³C-NMR (125 MHz, CDCl₃), δ (ppm): 141.0, 140.1, 61.0, 32.1, 26.1, 18.5, -5.0.

Representative Procedure for the Catalytic Enantioselective Conjugate Addition Of

Unsaturated- ketoester 3 and Nitroalkene 2.

To a solution of **3** (311 mg, 1.19 mmol) and **2** (330 g, 1.42 mmol) in DCM (6 mL) was added organocatalyst **C** (87 mg, 10%). The reaction mixture was first stirred at rt for 6 h and then further stirred at 80 °C for 36 h. Diastereomeric ratio at this stage was determined by the ¹H-NMR analysis of the crude product. The residue was purified by flash column chromatograph on silica gel (ethyl acetate/petroleum ether = 1/10) to afford the product **4** (516 mg, 88%yield) as a white powder. Compound **4** m.p.: 56-57 °C. $[\alpha]_D^{20}$ = +92.8, (c = 0.1, CHCl₃); 92% ee, determined by HPLC analysis [Chiralpak OD, *n*-hexane/*i*-PrOH = 75/25, 0.75 mL/min, λ = 254 nm, t (major) = 6.210 min, t (minor) = 6.958 min]; IR (thin film, v cm⁻¹): 3439, 2955, 2929, 2857, 1654, 1618, 1549, 1505, 1407, 1250, 1213, 1100, 836, 779; ¹H-NMR (500 MHz, CDCl₃), δ (ppm): 12.55 (s, 1H), 6.79-6.70 (m, 3H), 5.98 (s, 2H), 5.32 (dd, *J* = 2.9, 2.7 Hz, 1H), 4.32-4.23 (m, 2H), 3.88-3.81 (m, 2H), 3.48 (m, 1H), 3.32 (d, *J* = 7.9 Hz, 1H), 3.19 (dd, *J* = 18.4, 12.3 Hz, 1H), 2.58 (dd, *J* = 18.4, 6.6 Hz 1H), 1.99 (m, 1H), 1.68 (m, 1H), 1.35-1.28 (m, 3H), 0.90 (s, 9H), 0.10 (s, 6H); ¹³C-NMR (125 MHz, CDCl₃), δ (ppm): 172.1, 171.5, 148.6, 147.6, 132.3, 120.9, 108.9, 108.1, 101.6, 98.6, 88.6, 62.7, 61.2, 38.2, 38.1, 36.9, 30.3, 26.3, 18.8, 14.6, -5.0; HRMS (ESI): m/z calcd for C₂₄H₃₆NO₈Si⁺ [M + H]⁺: 494.2205, found 494.2205.

Synthesis of Compound 4a

The Compound **4** (40 mg,0.08 mmol) was dissolved in DCM (2 mL). To the resulting solution was added TsOH (1.4 mg, 10%). The resulting mixture was stirred at reflux for 8 h, and concentrated in vacuo. The residue was purified by flash chromatograph on silica gel (ethyl acetate/petroleum ether = 1/5) to afford the product **4a** (24mg, 91%) as a white solid. Compound **4a** mp: 177-178 °C; $[\alpha]_D^{20}$ = -202.17, (c = 0.1, CHCl₃); IR (thin film, v cm⁻¹): 3421, 2918, 1651, 1619, 1548, 1504, 1488, 1422, 1229, 1036, 935, 892; ¹H-NMR (500 MHz, CDCl₃), δ (ppm): 13.59 (s, 1H). 6.77 (d, *J* = 8.0 Hz, 1H), 6.57 (s, 1H), 6.51 (m, 1H), 5.98 (d, *J* = 1.75 Hz, 2H), 4.56 (dd, *J* = 10.6, 4.4 Hz, 1H), 4.51 (dd, *J* = 11.5, 2.65 Hz, 1H), 4.35 (td, *J* = 12.85, 2.2 Hz, 1H), 3.85 (dd, *J* = 7.3, 4.4 Hz, 1H), 3.18 (ddd , *J* = 19.6, 7.6, 2.4 Hz, 1H), 3.08 (t, *J* = 11.25 Hz, 1H), 2.79 (d, *J* = 19.5 Hz, 1H), 2.06 (t, *J* = 2.5 Hz, 1H) 1.70 (m, 1H); ¹³C-NMR (125 MHz, CDCl₃) δ (ppm): 172.9, 170.6, 148.6, 148.1, 130.7, 121.7, 108.9, 108.1, 101.7, 93.4, 88.5, 68.8, 41.8, 35.1, 30.9, 26.8; HRMS (ESI): m/z calcd for C₁₆H₁₆NO₇⁺ [M + H]⁺: 334.0921, found 334.0919.

Synthesis of Compound 5

To a stirred solution of **4** (500mg, 1.01mmol) in DMSO (5 mL) was added H₂SO₄ (1mL, 20% in H₂O) dropwisely at room temperature. The resulting mixture was stirred at 120 °C for 4 h. The resulting mixture was quenched with saturated aqueous NH₄Cl solution and extracted with EtOAc several times. The combined organic solution was dried over Mg₂SO₄ and concentrated invacuo. The residue was purified by flash column chromatography(ethyl acetate/petroleum ether =1/1)to afford product **5** (285 mg, 92%) as a pale yellow solid. Compound **5** m.p.: 100-102 °C; $[\alpha]_D^{20}$ = +33.1, (*c* = 0.1, CHCl₃); IR (thin film, v cm⁻¹): 3431, 2907, 2360, 2342, 1712, 1654, 1549, 1506, 1490, 1257, 1234, 1037, 931, 816; ¹H-NMR (400 MHz, CDCl₃), δ (ppm): 6.74 (d, *J* = 8.0 Hz, 1H), 6.66 (d, *J* = 1.2 Hz, 1H), 6.60 (d, *J* = 8.0 Hz, 1H), 5.92 (s, 2H), 5.16 (t, *J* = 4.4 Hz, 1H), 3.84 (d, *J* = 2.8 Hz, 1H), 3.75-3.66 (m, 3H), 3.28 (dd, *J* = 15.2, 12.4 Hz, 1H), 2.94 (m, 2H), 2.57 (d, *J* = 4.8 Hz, 1H), 2.35 (dd, J = 17.2, 7.6Hz, 1H), 1.77-1.63 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm): 208.5, 148.0, 147.3, 130.8, 120.7, 108.5, 107.7, 101.2, 90.5, 59.4, 41.6, 41.5, 41.4, 36.0, 35.4; H RMS (ESI): m/z calcd for C₁₅H₁₇NO₆Na⁺ [M + Na]⁺ : 330.0948, found 330.0946.

Synthesis of Compound 6

To asolution of **5** (260 mg, 0.85 mmol) in 5 mL of DCM at room temperature was added TEA (355 μ L, 2.55 mmol) followed by slow addition of methanesulfonyl chloride (79 μ L, 1.02 mmol) at 0 °C.The mixture was then stirred for 1 h and quenched with some water. The solution was extracted with DCM. The combined organic extracts were washed with brine, dried over Na₂SO₄. After removal of the solvent under reduced pressure, the crude product was purified through column chromatography on silica gel (ethyl acetate/petroleum ether = 3/1) to afford **6** (310 mg, 95%) as a yellow oil. Compound **6** [α]_D²⁰= +0.9, (*c* = 0.1, CHCl₃); IR (thin film, v cm⁻¹): 3439, 2921, 1718, 1550, 1505, 1491, 1352, 1173, 1037, 932, 817; ¹H-NMR (400 MHz, CDCl₃), δ (ppm): 6.76 (d, *J* = 8.0 Hz, 1H), 6.61-6.57 (m, 2H), 5.95 (s, 2H), 4.99 (t, *J* = 5.2 Hz, 1H), 4.38-4.27 (m, 2H), 3.69-3.64 (m, 1H), 3.24 (dd, *J* = 15.6, 5.2Hz, 1H), 3.01 (s, 3H), 2.97 (t, *J* = 5.2 Hz, 1H), 2.89 (t, *J* = 10.4 Hz, 1H), 2.65 (dd, *J* = 15.6, 5.2Hz, 1H), 2.40 (dd, *J* = 14.4, 6.4 Hz, 1H), 2.00-1.95 (m, 1H), 1.93-1.86 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm): 206.9, 148.1, 147.5, 130.1, 120.9, 108.6,

107.7, 101.3, 90.2, 66.0, 42.1, 41.6, 41.3, 37.5, 34.7, 32.5; HRMS (ESI): m/z calcd for $C_{16}H_{19}NO_8SNa^+[M + Na]^+$: 408.0724, found 408.0723.

Synthesis of Compound 7

A solution of **6** (210 mg, 0.54mmol) in acetic acid (5 mL)was added Zn dust (1.05 g, 16.2 mmol) at rt. The resulting slurry was stirred vigorously at rt for 10 min. The mixture was filtered, rinsed with dichloromethane and water to remove Zn dust. The aqueous layer was basified to pH 10 with aqueous NaOH and the layers was separated, the aqueous was extracted with DCM. The organic extracts dried over Na₂SO₄. After removal of the solvent under reduced pressure, the crude product was purified through columnchromatography on silica gel (DCM/MeOH= 20/1) to afford 7 (131 mg, 94%) as a pale yellow oil. Compound 7 $[\alpha]_D^{20}$ = -117.98, (*c* = 0.1, CHCl₃); IR (thin film, v cm⁻¹): 3435, 2887, 1708, 1622, 1503, 1490, 1442, 1235, 1038, 933, 811; ¹H-NMR (400 MHz, CDCl₃) δ (ppm): 6.77 (d, *J* = 8.0 Hz, 1H), 6.64 (s, 1H), 6.59 (d, *J* = 8.0 Hz, 1H), 5.94 (s, 2H), 4.63 (s, 1H), 3.75 (s, 1H), 3.12 (m, 2H), 2.99 (m, 1H), 2.76 (m, 3H), 2.30 (t, *J* = 14 Hz, 1H), 1.94 (m, 1H), 1.75 (m,1H), 1.52 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm): 211.2, 147.7, 146.6, 132.7, 122.1, 109.5, 108.1, 101.0, 65.0, 45.8, 45.6, 45.0, 41.2, 38.6, 30.9; HRMS (ESI): m/z calcd for C₁₅H₁₈NO₃⁺ [M + H]⁺: 260.1281, found 260.1282.

Synthesis of Compound 8

To a solution of 7 (100 mg, 0.38 mmol), TEA (107 µL, 0.77 mmol) in CH₂Cl₂ (3 ml) was added ethyl chloroformate (65 µL, 0.45 mmol) at 0 °C. The reaction mixture was stirred at rt for 3 h. The resulting mixture was diluted with CH₂Cl₂, washed with saturated aqueous NaHCO₃ solution. The combined organic solution was extracted with CH₂Cl₂, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane/EtOAc = 3/1) to give 113 mg of the product **8** as a yellow oil. Compound **8** $[\alpha]_D^{20}$ = -173.90, (*c* = 0.1, CHCl₃); IR (thin film, v cm⁻¹): 3417, 2976, 2897, 1696, 1503, 1491, 1352, 1173, 1037, 932, 817; ¹H-NMR (400 MHz, CDCl₃), δ (ppm): 6.70 (d, *J* = 8.0 Hz, 1H), 6.61-6.50 (m, 2H), 5.91 (s, 2H), 4.36 (s, 1H), 4.19 (m, 2H), 3.78 (dd, *J* = 11.2, 4.4 Hz, 1H), 3.66 (t, *J* = 9.2 Hz, 1H), 2.97-2.91 (m, 1H), 2.78 (d, *J* = 4.8 Hz, 2H), 2.69 (dd, *J* = 14.8, 3.6 Hz, 1H), 2.37 (t, *J* = 14.0 Hz, 1H), 2.14(s, 1H), 1.81-1.75 (m, 1H), 1.53 (m, 1H), 1.39 (m, 1H), 1.32 (m, 2H); 13 C-NMR (100 MHz, CDCl₃) δ (ppm): 209.7, 156.2, 147.4, 146.2, 133.4, 121.7, 109.5, 107.7, 100.8, 65.1, 61.0, 48.0, 45.7, 44.5, 39.5, 36.9, 29.3, 14.8; HRMS (ESI): m/z calcd for C₁₈H₂₂NO₅⁺ [M + H]⁺: 332.1492, found: 332.1495.

Synthesis of Compound 9

To a stirred solution of carbamate **8** (65 mg, 0.19 mmol) and DMAP (61 mg, 0.50 mmol) in CH₂Cl₂ (2 mL) was added trifluoromethane-sulfonic anhydride (0.14 mL, 0.84 mmol) at 0 °C. The resulting suspension was stirred at 0 °C for 20 h. The reaction mixture was diluted with EtOAc, washed with saturated aqueous NH₄Cl solution and extracted with EtOAc several times. The combined organic solution was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/EtOAc = 3/1) to give 68 mg of the product **9** as as a pale yellow solid (87%). Compound **9** m.p.: 125-12 6 °C; $[\alpha]_D^{20}$ = -2.742, (*c* = 0.1, CHCl₃); IR (thin film, v cm⁻¹): 3474, 3414, 1639, 1615, 1475, 1418, 1207, 1140, 1032, 882; ¹H-NMR (500 MHz, CDCl₃) δ (ppm): 7.62 (s, 1H), 6.71 (s, 1H), 6.34 (dd, *J* = 5.0, 2.0 Hz, 1H), 6.01 (s, 2H), 4.43-4.38 (m, 1H), 4.17 (d, *J* = 3.0 Hz, 1H), 3.35-3.29 (m, 2H), 2.61 (dd, *J* = 17.0, 5.0 Hz, 1H), 2.42-2.38 (m, 1H), 2.17-2.14 (m, 1H), 1.79 (m, 1H), 1.58-1.55 (m, 1H); ¹³C-NMR (125 MHz, CDCl₃) δ (ppm): 164.2, 151.6, 150.3, 147.2, 131.5, 120.7, 119.7 (q, *J* = 318.7 Hz), 117.7, 108.6, 105.1, 101.8, 59.3, 45.1, 36.0, 32.4, 32.1, 28.0; HRMS (ESI): m/z calcd for C₁₇H₁₅F₃NO₆S⁺ [M + H]⁺: 418.0567, found: 418.0571.

Synthesis of (–)-δ-lycorane

Pd/C (10%, 26 mg, 0.025 mmol) was added to the triflate **9** (15 mg, 0.05 mmol) in MeOH (7 mL). H_2 was initially bubbled through a needle for 5 min into the reaction mixture, which was then stirred overnight under H_2 by using a balloon. Upon filtration using Celite, the MeOH was evaporated, The crude product was carried to the next step without further purification. To a solution of the crude mixture in dry THF (3 mL) was added LiAlH₄ (5.7 mg, 0.15 mmol). The resulting mixture was stirred under reflux for 5 h. Then 1 M NaOH was added and the reaction mixture was extracted with CH₂Cl₂. The organic layer was washed with brine and dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash silica

gel chromatography (DCM/MeOH = 10/1) to give (-)- δ -lycorane (9 mg, 72%) as a white solid. m.p.: 125-126 °C; $[\alpha]_D^{20}$ = -51.9, (*c* = 0.1, CHCl₃); IR (thin film, v cm⁻¹): 3551, 3477, 3414, 1637, 1617, 619, 473; ¹H-NMR (500 MHz, CDCl₃), δ (ppm): 6.79 (s, 1H), 6.68 (s, 1H), 5.93 (s, 2H), 4.29 (d, *J* = 14.5 Hz, 1H), 3.95 (dd, *J* = 11.0, 8.5 Hz, 1H), 3.68 (d, *J* = 14.5 Hz, 1H), 3.52 (dd, *J* = 11.5, 4.0 Hz, 1H), 3.25 (s, 1H), 2.50 (m, 1H), 2.41 (d, *J* = 2.0 Hz, 1H), 1.86 (m, 1H), 1.77 (m, 2H), 1.66 (d, J = 14.5 Hz, 1H), 1.59 (m, 2H), 1.37 (m, 2H); ¹³C-NMR (125 MHz, CDCl₃) δ (ppm): 149.0, 146.5, 131.3, 120.5, 109.5, 106.9, 101.5, 66.3, 55.1, 50.7, 39.7, 34.5, 29.6, 29.0, 24.8, 20.4; HRMS (ESI): m/z calcd for C₁₆H₂₀NO₂⁺ [M + H]⁺: 258.1489, found: 258.1488.

α–lycorane	$\delta = 6.69$ (s, 1 H), 6.64 (s, 1 H), 5.91 (s, 2H), 4.27 (d, $J = 14.8$ Hz,
(Ref 7b)	1H), 3.74 (d, <i>J</i> = 14.8 Hz, 1 H), 3.40 (m, 1 H), 2.91 (m, 1H), 2.70
(1001 70)	(m, 1H), 2.49 (brs, 1H), 2.38 (m,1H), 2.25 (m, 1 H), 1.88 (m, 2 H),
	1.68 (m, 3 H), 1.58 (m, 1 H),1.22 (m, 1H).
β – lycorane	$\delta = 6.72$ (s, 1H), 6.51 (s, 1H), 5.93-5.91 (m, 2H), 4.02 (d, $J = 15.4$
(Ref 7d)	Hz, 1H), 3.22-3.12 (m, 2H), 2.54-2.51 (m, 1H), 2.23-2.21 (m, 2H),
(iter /u)	2.10- 1.98 (m, 3H), 1.88-1.58 (m, 4H), 1.42-1.38 (m, 2H).
γ– lycorane	$\delta = 6.61$ (s, 1H), 6.49 (s, 1H), 5.89 (d, $J = 2.8$ Hz, 2H), 4.01 (d, $J =$
(Ref 7e)	14.4 Hz, 1H), 3.38 (td, <i>J</i> = 9.2, 3.8 Hz, 1H), 3.21 (d, <i>J</i> = 14.3 Hz,
(iter /e)	1H), $2.82-2.65$ (m, 1H), 2.37 (t, $J = 4.7$ Hz, 1H), $2.20-2.12$ (m, 2H),
	2.03–2.00 (m, 1H), 1.77–1.61 (m, 3H), 1.53–1.38 (m, 2H),
	1.36–1.25 (m, 2H).
δ– lycorane	$\delta = 6.82$ (s, 1 H), 6.60 (s, 1 H), 5.90 (s , 2H) , 3.94 (d, 1H , $J = 15$
(Ref 8b)	Hz), 3.32 (d, 1H, <i>J</i> = 15 Hz), 1. 07-3.37 (comp, 13 H).
δ– lycorane	$\delta = 6.79$ (s, 1H), 6.68 (s, 1H), 5.93 (s, 2H), 4.29 (d, $J = 14.5$ Hz,
(our data)	1H), 3.95 (dd, <i>J</i> = 11.0, 8.5 Hz, 1H), 3.68 (d, <i>J</i> = 14.5 Hz, 1H), 3.52
	(dd, J = 11.5, 4.0 Hz, 1H), 3.25 (s, 1H), 2.50 (m, 1H), 2.41 (d, J =
	2.0 Hz, 1H), 1.86 (m, 1H), 1.77 (m, 2H), 1.66 (d, J = 14.5 Hz, 1H),
	1.59 (m, 2H), 1.37 (m, 2H).

comparison of ¹H-NMR spectroscopic data for lycoranes

3. ¹H-NMR, ¹³C-NMR spectrum of compounds

YUNNAN UNIVER. AV. DRX 500 weikun WJL-1119 in CDC13 15111901

I

LZ13 CDC13 Oct27-2016-wangjunliang

4. X-Ray Crystallographic Data for Compound 4a

Crystal data for cu_yd_lj4a_0m: C₁₆H₁₅NO₇, M = 333.29, a = 11.4884(5) Å, b = 11.9792(5) Å, c = 20.8251(8) Å, $a = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, V = 2866.0(2) Å³, T = 100(2) K, space group P212121, Z = 8, μ (CuK α) = 1.047 mm⁻¹, 21586 reflections measured, 5304 independent reflections ($R_{int} = 0.0624$). The final R_I values were 0.0527 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.1534 ($I > 2\sigma(I)$). The final R_I values were 0.0535 (all data). The final $wR(F^2)$ values were 0.1545 (all data). The goodness of fit on F^2 was 1.034. Flack parameter = 0.14(7).

View of the molecules in an asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.

View of a molecule of yd_lj4a with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

View of the pack drawing of yd_lj4a. Hydrogen-bonds are shown as dashed lines.

Table 1.	Crystal data and structure refinement	nt for cu_yd_lj4a_0m.	
Identificatio	n code	cu_yd_lj4a_0m	
Empirical fo	ormula	C16 H15 N O7	
Formula we	ight	333.29	
Temperature		100(2) K	
Wavelength		1.54178 Å	
Crystal syste	em	Orthorhombic	
Space group)	P212121	
Unit cell dir	nensions	a = 11.4884(5) Å	α= 90°.
		b = 11.9792(5) Å	β= 90°.
		c = 20.8251(8) Å	γ = 90°.
Volume		2866.0(2) Å ³	
Ζ		8	
Density (cal	culated)	1.545 Mg/m ³	
Absorption	coefficient	1.047 mm ⁻¹	
F(000)		1392	
Crystal size		$0.900 \ge 0.830 \ge 0.070 \text{ mm}^3$	

Theta range for data collection	4.246 to 70.404°.
Index ranges	-13<=h<=13, -12<=k<=14, -24<=l<=25
Reflections collected	21586
Independent reflections	5304 [R(int) = 0.0624]
Completeness to theta = 67.679°	99.6 %
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5304 / 0 / 433
Goodness-of-fit on F ²	1.034
Final R indices [I>2sigma(I)]	R1 = 0.0527, wR2 = 0.1534
R indices (all data)	R1 = 0.0535, $wR2 = 0.1545$
Absolute structure parameter	0.14(7)
Extinction coefficient	n/a
Largest diff. peak and hole	0.449 and -0.557 e.Å ⁻³

Table 2. Atomic coordinates ($x\;10^4)$ and equivalent $% (x\;10^3)$ isotropic displacement parameters (Å $^2x\;10^3)$

	Х	у	Z	U(eq)
O(1)	8151(2)	4448(2)	9702(1)	27(1)
O(2)	10937(3)	-2459(2)	8300(1)	35(1)
O(3)	11180(3)	-2386(2)	9403(1)	27(1)
O(4)	10039(2)	4114(2)	9100(1)	23(1)
O(5)	6677(2)	3304(2)	9640(1)	26(1)
O(6)	8079(3)	387(2)	7258(1)	35(1)
O(7)	7547(3)	-211(2)	8189(1)	29(1)
O(8)	3808(2)	4271(2)	8627(1)	26(1)
O(9)	4698(3)	4437(2)	5361(1)	31(1)
O(10)	3145(2)	3036(2)	9396(1)	25(1)
O(11)	1611(3)	892(3)	6924(2)	37(1)
O(12)	2765(3)	-527(2)	6890(1)	36(1)
O(13)	2860(2)	4033(2)	5308(1)	25(1)
O(14)	6113(2)	3347(2)	6047(1)	29(1)
C(26)	10231(3)	2636(3)	8370(2)	17(1)
N(2)	7967(3)	501(2)	7841(1)	20(1)
C(1)	7773(3)	3562(3)	9487(2)	21(1)
C(2)	8444(3)	2842(3)	9062(2)	16(1)
C(3)	9517(3)	3197(3)	8874(2)	16(1)
C(4)	9767(3)	1516(3)	8129(1)	16(1)
C(5)	10206(3)	515(3)	8503(2)	15(1)
C(6)	10407(3)	-477(3)	8170(2)	20(1)
C(7)	10746(3)	-1392(3)	8515(2)	20(1)
C(8)	11267(3)	-3098(3)	8848(2)	23(1)
C(9)	10915(3)	-1345(3)	9175(2)	18(1)
C(10)	10781(3)	-374(3)	9507(2)	18(1)
C(11)	10413(3)	561(3)	9164(2)	17(1)
C(12)	6201(3)	2231(3)	9456(2)	24(1)
C(13)	6587(3)	1905(3)	8790(2)	21(1)
C(14)	7909(3)	1786(3)	8792(1)	16(1)
C(15)	8418(3)	1578(3)	8128(2)	17(1)
C(16)	3158(4)	4188(3)	9213(2)	30(1)

for cu_yd_lj4a_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(17)	3768(3)	3206(3)	8373(2)	19(1)
C(18)	4110(3)	2865(3)	7770(2)	20(1)
C(19)	4073(3)	1721(3)	7645(2)	19(1)
C(20)	4481(3)	1237(3)	7008(2)	20(1)
C(21)	3499(3)	1154(3)	6501(2)	19(1)
C(22)	3053(3)	2284(3)	6272(2)	18(1)
C(23)	4080(3)	2964(3)	6040(2)	18(1)
C(24)	3899(3)	3844(3)	5556(2)	22(1)
C(25)	3383(3)	2469(3)	8832(2)	20(1)
N(1)	2540(3)	454(3)	6792(1)	25(1)
C(27)	1864(3)	3359(3)	5499(2)	25(1)
C(28)	2189(3)	2197(3)	5719(2)	23(1)
C(29)	5182(3)	2777(3)	6245(2)	20(1)
C(30)	5507(3)	1865(3)	6701(2)	24(1)
C(31)	3694(3)	980(3)	8117(2)	21(1)
C(32)	3330(3)	1341(3)	8724(2)	22(1)

O(1)-C(1)	1.230(5)
O(2)-C(7)	1.372(4)
O(2)-C(8)	1.425(4)
O(3)-C(9)	1.369(4)
O(3)-C(8)	1.440(4)
O(4)-C(3)	1.337(4)
O(4)-H(4A)	0.8400
O(5)-C(1)	1.335(5)
O(5)-C(12)	1.449(5)
O(6)-N(2)	1.229(4)
O(7)-N(2)	1.219(4)
O(8)-C(17)	1.382(4)
O(8)-C(16)	1.435(5)
O(9)-C(24)	1.230(5)
O(10)-C(25)	1.385(4)
O(10)-C(16)	1.432(4)
O(11)-N(1)	1.221(5)
O(12)-N(1)	1.220(4)
O(13)-C(24)	1.320(5)
O(13)-C(27)	1.455(5)
O(14)-C(29)	1.334(4)
O(14)-H(14A)	0.8400
C(26)-C(3)	1.492(5)
C(26)-C(4)	1.528(4)
C(26)-H(3)	0.9900
C(26)-H(4)	0.9900
N(2)-C(15)	1.513(4)
C(1)-C(2)	1.457(5)
C(2)-C(3)	1.361(5)
C(2)-C(14)	1.515(4)
C(4)-C(5)	1.516(4)
C(4)-C(15)	1.553(5)
C(4)-H(12)	1.0000
C(5)-C(6)	1.395(5)
C(5)-C(11)	1.397(4)
C(6)-C(7)	1.368(5)

 $Table \ 3. \hspace{1.5cm} \text{Bond lengths } [\text{\AA}] \ and \ angles \ [^\circ] \ for \hspace{1.5cm} cu_yd_lj4a_0m.$

C(6)-H(13)	0.9500
C(7)-C(9)	1.388(5)
C(8)-H(1)	0.9900
C(8)-H(2)	0.9900
C(9)-C(10)	1.363(5)
C(10)-C(11)	1.395(5)
C(10)-H(15)	0.9500
C(11)-H(14)	0.9500
C(12)-C(13)	1.508(5)
C(12)-H(11)	0.9900
C(12)-H(10)	0.9900
C(13)-C(14)	1.526(5)
C(13)-H(9)	0.9900
C(13)-H(8)	0.9900
C(14)-C(15)	1.521(4)
C(14)-H(7)	1.0000
C(15)-H(6)	1.0000
C(16)-H(18)	0.9900
C(16)-H(16)	0.9900
C(17)-C(25)	1.375(5)
C(17)-C(18)	1.377(5)
C(18)-C(19)	1.395(5)
C(18)-H(31)	0.9500
C(19)-C(31)	1.393(5)
C(19)-C(20)	1.522(5)
C(20)-C(30)	1.538(5)
C(20)-C(21)	1.549(5)
C(20)-H(28)	1.0000
C(21)-N(1)	1.513(4)
C(21)-C(22)	1.523(5)
C(21)-H(27)	1.0000
C(22)-C(23)	1.514(5)
C(22)-C(28)	1.525(5)
C(22)-H(26)	1.0000
C(23)-C(29)	1.355(5)
C(23)-C(24)	1.472(5)
C(25)-C(32)	1.371(5)
C(27)-C(28)	1.511(5)

C(27)-H(20)	0.9900
C(27)-H(19)	0.9900
C(28)-H(22)	0.9900
C(28)-H(21)	0.9900
C(29)-C(30)	1.495(5)
C(30)-H(25)	0.9900
C(30)-H(24)	0.9900
C(31)-C(32)	1.400(5)
C(31)-H(30)	0.9500
C(32)-H(29)	0.9500
C(7)-O(2)-C(8)	106.3(3)
C(9)-O(3)-C(8)	106.0(3)
C(3)-O(4)-H(4A)	109.5
C(1)-O(5)-C(12)	119.9(3)
C(17)-O(8)-C(16)	104.2(3)
C(25)-O(10)-C(16)	104.2(3)
C(24)-O(13)-C(27)	120.5(3)
C(29)-O(14)-H(14A)	109.5
C(3)-C(26)-C(4)	115.8(3)
C(3)-C(26)-H(3)	108.3
C(4)-C(26)-H(3)	108.3
C(3)-C(26)-H(4)	108.3
C(4)-C(26)-H(4)	108.3
H(3)-C(26)-H(4)	107.4
O(7)-N(2)-O(6)	123.5(3)
O(7)-N(2)-C(15)	119.8(3)
O(6)-N(2)-C(15)	116.7(3)
O(1)-C(1)-O(5)	116.4(3)
O(1)-C(1)-C(2)	123.0(3)
O(5)-C(1)-C(2)	120.4(3)
C(3)-C(2)-C(1)	117.9(3)
C(3)-C(2)-C(14)	121.4(3)
C(1)-C(2)-C(14)	120.4(3)
O(4)-C(3)-C(2)	124.2(3)
O(4)-C(3)-C(26)	111.7(3)
C(2)-C(3)-C(26)	124.0(3)
C(5)-C(4)-C(26)	114.2(3)

C(5)-C(4)-C(15)	111.8(3)
C(26)-C(4)-C(15)	107.9(3)
C(5)-C(4)-H(12)	107.6
C(26)-C(4)-H(12)	107.6
C(15)-C(4)-H(12)	107.6
C(6)-C(5)-C(11)	119.6(3)
C(6)-C(5)-C(4)	118.3(3)
C(11)-C(5)-C(4)	122.1(3)
C(7)-C(6)-C(5)	118.0(3)
C(7)-C(6)-H(13)	121.0
C(5)-C(6)-H(13)	121.0
C(6)-C(7)-O(2)	128.4(3)
C(6)-C(7)-C(9)	121.8(3)
O(2)-C(7)-C(9)	109.8(3)
O(2)-C(8)-O(3)	107.9(3)
O(2)-C(8)-H(1)	110.1
O(3)-C(8)-H(1)	110.1
O(2)-C(8)-H(2)	110.1
O(3)-C(8)-H(2)	110.1
H(1)-C(8)-H(2)	108.4
C(10)-C(9)-O(3)	128.8(3)
C(10)-C(9)-C(7)	121.4(3)
O(3)-C(9)-C(7)	109.8(3)
C(9)-C(10)-C(11)	117.3(3)
C(9)-C(10)-H(15)	121.3
С(11)-С(10)-Н(15)	121.3
C(10)-C(11)-C(5)	121.7(3)
С(10)-С(11)-Н(14)	119.1
C(5)-C(11)-H(14)	119.1
O(5)-C(12)-C(13)	111.2(3)
O(5)-C(12)-H(11)	109.4
С(13)-С(12)-Н(11)	109.4
O(5)-C(12)-H(10)	109.4
С(13)-С(12)-Н(10)	109.4
H(11)-C(12)-H(10)	108.0
C(12)-C(13)-C(14)	108.3(3)
С(12)-С(13)-Н(9)	110.0
С(14)-С(13)-Н(9)	110.0

C(12)-C(13)-H(8)	110.0
С(14)-С(13)-Н(8)	110.0
H(9)-C(13)-H(8)	108.4
C(2)-C(14)-C(13)	109.1(3)
C(2)-C(14)-C(15)	108.5(3)
C(13)-C(14)-C(15)	113.3(3)
C(2)-C(14)-H(7)	108.6
C(13)-C(14)-H(7)	108.6
C(15)-C(14)-H(7)	108.6
N(2)-C(15)-C(14)	111.5(3)
N(2)-C(15)-C(4)	107.6(3)
C(14)-C(15)-C(4)	112.9(3)
N(2)-C(15)-H(6)	108.2
С(14)-С(15)-Н(6)	108.2
C(4)-C(15)-H(6)	108.2
O(10)-C(16)-O(8)	107.4(3)
O(10)-C(16)-H(18)	110.2
O(8)-C(16)-H(18)	110.2
O(10)-C(16)-H(16)	110.2
O(8)-C(16)-H(16)	110.2
H(18)-C(16)-H(16)	108.5
C(25)-C(17)-O(8)	109.7(3)
C(25)-C(17)-C(18)	122.3(3)
O(8)-C(17)-C(18)	127.8(3)
C(17)-C(18)-C(19)	116.9(3)
C(17)-C(18)-H(31)	121.5
C(19)-C(18)-H(31)	121.5
C(31)-C(19)-C(18)	120.2(3)
C(31)-C(19)-C(20)	117.9(3)
C(18)-C(19)-C(20)	121.8(3)
C(19)-C(20)-C(30)	114.3(3)
C(19)-C(20)-C(21)	113.2(3)
C(30)-C(20)-C(21)	107.8(3)
С(19)-С(20)-Н(28)	107.0
C(30)-C(20)-H(28)	107.0
С(21)-С(20)-Н(28)	107.0
N(1)-C(21)-C(22)	111.9(3)
N(1)-C(21)-C(20)	107.0(3)

C(22)-C(21)-C(20)	113.7(3)
N(1)-C(21)-H(27)	108.0
С(22)-С(21)-Н(27)	108.0
C(20)-C(21)-H(27)	108.0
C(23)-C(22)-C(21)	108.4(3)
C(23)-C(22)-C(28)	107.6(3)
C(21)-C(22)-C(28)	113.3(3)
C(23)-C(22)-H(26)	109.2
С(21)-С(22)-Н(26)	109.2
C(28)-C(22)-H(26)	109.2
C(29)-C(23)-C(24)	117.8(3)
C(29)-C(23)-C(22)	122.6(3)
C(24)-C(23)-C(22)	119.6(3)
O(9)-C(24)-O(13)	116.5(3)
O(9)-C(24)-C(23)	122.2(3)
O(13)-C(24)-C(23)	121.2(3)
C(32)-C(25)-C(17)	122.2(3)
C(32)-C(25)-O(10)	127.9(3)
C(17)-C(25)-O(10)	109.8(3)
O(12)-N(1)-O(11)	124.2(3)
O(12)-N(1)-C(21)	116.6(3)
O(11)-N(1)-C(21)	119.2(3)
O(13)-C(27)-C(28)	113.5(3)
O(13)-C(27)-H(20)	108.9
С(28)-С(27)-Н(20)	108.9
O(13)-C(27)-H(19)	108.9
С(28)-С(27)-Н(19)	108.9
H(20)-C(27)-H(19)	107.7
C(27)-C(28)-C(22)	109.1(3)
С(27)-С(28)-Н(22)	109.9
C(22)-C(28)-H(22)	109.9
С(27)-С(28)-Н(21)	109.9
C(22)-C(28)-H(21)	109.9
H(22)-C(28)-H(21)	108.3
O(14)-C(29)-C(23)	124.5(3)
O(14)-C(29)-C(30)	111.7(3)
C(23)-C(29)-C(30)	123.7(3)
C(29)-C(30)-C(20)	115.5(3)

С(29)-С(30)-Н(25)	108.4
C(20)-C(30)-H(25)	108.4
C(29)-C(30)-H(24)	108.4
C(20)-C(30)-H(24)	108.4
H(25)-C(30)-H(24)	107.5
C(19)-C(31)-C(32)	122.2(3)
С(19)-С(31)-Н(30)	118.9
C(32)-C(31)-H(30)	118.9
C(25)-C(32)-C(31)	116.1(3)
C(25)-C(32)-H(29)	122.0
С(31)-С(32)-Н(29)	122.0

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U33	U ²³	U13	U12	
O(1)	32(1)	20(1)	29(1)	-9(1)	2(1)	3(1)	
O(2)	68(2)	18(1)	18(1)	-3(1)	-7(1)	14(1)	
O(3)	45(2)	17(1)	19(1)	1(1)	-7(1)	6(1)	
O(4)	25(1)	17(1)	28(1)	-5(1)	0(1)	-4(1)	
O(5)	22(1)	30(1)	24(1)	-3(1)	5(1)	4(1)	
O(6)	59(2)	30(1)	16(1)	-5(1)	-6(1)	-12(1)	
O(7)	40(2)	21(1)	27(1)	2(1)	0(1)	-11(1)	
O(8)	35(2)	20(1)	22(1)	-1(1)	7(1)	0(1)	
O(9)	34(2)	24(1)	33(1)	10(1)	5(1)	-8(1)	
O(10)	32(1)	26(1)	18(1)	-2(1)	6(1)	2(1)	
O(11)	30(2)	47(2)	34(1)	4(1)	12(1)	-9(1)	
O(12)	61(2)	19(1)	28(1)	-1(1)	-1(1)	-13(1)	
O(13)	30(1)	23(1)	22(1)	3(1)	0(1)	5(1)	
O(14)	23(1)	31(1)	32(1)	6(1)	5(1)	-8(1)	
C(26)	14(2)	17(2)	19(1)	3(1)	2(1)	-3(1)	
N(2)	21(2)	21(1)	17(1)	2(1)	-4(1)	-3(1)	
C(1)	23(2)	21(2)	18(2)	1(1)	-2(1)	4(1)	
C(2)	17(2)	19(2)	13(1)	2(1)	-2(1)	2(1)	
C(3)	19(2)	14(2)	17(1)	2(1)	-4(1)	0(1)	
C(4)	20(2)	16(2)	12(1)	-1(1)	0(1)	1(1)	
C(5)	15(2)	17(2)	13(1)	2(1)	1(1)	1(1)	
C(6)	26(2)	21(2)	14(2)	0(1)	-1(1)	3(1)	
C(7)	25(2)	19(2)	16(2)	-3(1)	2(1)	3(1)	
C(8)	28(2)	17(2)	25(2)	0(2)	0(1)	5(1)	
C(9)	18(2)	19(2)	17(2)	1(1)	-2(1)	3(1)	
C(10)	20(2)	20(2)	14(1)	0(1)	-4(1)	1(1)	
C(11)	16(2)	18(2)	16(2)	-2(1)	-1(1)	1(1)	
C(12)	13(2)	36(2)	24(2)	-3(2)	2(1)	-2(1)	
C(13)	15(2)	28(2)	19(2)	0(1)	-4(1)	-2(1)	
C(14)	16(2)	19(2)	13(1)	1(1)	-3(1)	0(1)	
C(15)	22(2)	16(2)	13(1)	2(1)	-2(1)	-1(1)	
C(16)	37(2)	25(2)	27(2)	-4(2)	9(2)	-1(2)	
C(17)	18(2)	18(2)	21(2)	-1(1)	-2(1)	0(1)	

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for cu_yd_lj4a_0m. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 a^{*2}U^{11} + ... + 2 h k a^{*} b^{*} U^{12}$]

C(18)	20(2)	21(2)	19(2)	6(1)	1(1)	0(1)
C(19)	18(2)	23(2)	16(2)	3(1)	-2(1)	3(1)
C(20)	21(2)	20(2)	20(2)	0(1)	2(1)	5(1)
C(21)	23(2)	19(2)	16(1)	-2(1)	6(1)	-1(1)
C(22)	21(2)	20(2)	14(1)	-2(1)	5(1)	2(1)
C(23)	24(2)	14(2)	16(1)	-3(1)	4(1)	1(1)
C(24)	31(2)	19(2)	18(2)	-1(1)	1(1)	4(1)
C(25)	18(2)	27(2)	15(1)	1(1)	-1(1)	2(1)
N(1)	36(2)	24(2)	15(1)	-3(1)	2(1)	-11(1)
C(27)	21(2)	32(2)	22(2)	-3(2)	-1(1)	5(2)
C(28)	23(2)	27(2)	18(2)	2(1)	2(1)	-1(1)
C(29)	20(2)	20(2)	20(2)	-3(1)	5(1)	1(1)
C(30)	20(2)	25(2)	27(2)	2(2)	2(1)	6(1)
C(31)	24(2)	18(2)	20(2)	0(1)	-1(1)	-1(1)
C(32)	22(2)	26(2)	18(2)	5(1)	0(1)	-2(1)

	Х	У	Z	U(eq)
H(4A)	9603	4426	9369	35
H(14A)	5906	3834	5781	43
H(3)	11024	2519	8543	20
H(4)	10299	3148	7999	20
H(12)	10028	1426	7674	19
H(13)	10312	-515	7718	24
H(1)	12075	-3371	8798	28
H(2)	10745	-3750	8896	28
H(15)	10933	-335	9955	22
H(14)	10300	1246	9384	20
H(11)	5340	2266	9470	29
H(10)	6459	1656	9767	29
H(9)	6349	2484	8477	25
H(8)	6221	1190	8664	25
H(7)	8124	1146	9077	19
H(6)	8177	2207	7841	20
H(18)	3529	4644	9553	35
H(16)	2354	4461	9148	35
H(31)	4360	3384	7454	24
H(28)	4753	459	7096	24
H(27)	3813	745	6120	23
H(26)	2675	2680	6640	22
H(20)	1321	3300	5132	30
H(19)	1450	3744	5853	30
H(22)	2543	1778	5359	27
H(21)	1484	1792	5861	27
H(25)	5987	2191	7049	29
H(24)	5998	1319	6469	29
H(30)	3683	204	8024	25
H(29)	3062	834	9042	26

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for cu_yd_lj4a_0m.

C(12)-O(5)-C(1)-O(1)	-174.4(3)
C(12)-O(5)-C(1)-C(2)	8.6(5)
O(1)-C(1)-C(2)-C(3)	-2.8(5)
O(5)-C(1)-C(2)-C(3)	174.0(3)
O(1)-C(1)-C(2)-C(14)	-177.4(3)
O(5)-C(1)-C(2)-C(14)	-0.6(5)
C(1)-C(2)-C(3)-O(4)	6.3(5)
C(14)-C(2)-C(3)-O(4)	-179.2(3)
C(1)-C(2)-C(3)-C(26)	-170.9(3)
C(14)-C(2)-C(3)-C(26)	3.6(5)
C(4)-C(26)-C(3)-O(4)	174.1(3)
C(4)-C(26)-C(3)-C(2)	-8.4(5)
C(3)-C(26)-C(4)-C(5)	-90.0(3)
C(3)-C(26)-C(4)-C(15)	35.0(4)
C(26)-C(4)-C(5)-C(6)	-145.1(3)
C(15)-C(4)-C(5)-C(6)	92.0(4)
C(26)-C(4)-C(5)-C(11)	34.8(4)
C(15)-C(4)-C(5)-C(11)	-88.0(4)
C(11)-C(5)-C(6)-C(7)	3.4(5)
C(4)-C(5)-C(6)-C(7)	-176.7(3)
C(5)-C(6)-C(7)-O(2)	176.6(4)
C(5)-C(6)-C(7)-C(9)	-1.5(6)
C(8)-O(2)-C(7)-C(6)	-179.7(4)
C(8)-O(2)-C(7)-C(9)	-1.4(4)
C(7)-O(2)-C(8)-O(3)	4.2(4)
C(9)-O(3)-C(8)-O(2)	-5.4(4)
C(8)-O(3)-C(9)-C(10)	-177.5(4)
C(8)-O(3)-C(9)-C(7)	4.6(4)
C(6)-C(7)-C(9)-C(10)	-1.7(6)
O(2)-C(7)-C(9)-C(10)	179.8(3)
C(6)-C(7)-C(9)-O(3)	176.3(3)
O(2)-C(7)-C(9)-O(3)	-2.1(4)
O(3)-C(9)-C(10)-C(11)	-174.7(3)
C(7)-C(9)-C(10)-C(11)	2.9(5)
C(9)-C(10)-C(11)-C(5)	-1.0(5)
C(6)-C(5)-C(11)-C(10)	-2.2(5)

Table 6.Torsion angles [°] for cu_yd_lj4a_0m.

C(4)-C(5)-C(11)-C(10)	177.9(3)
C(1)-O(5)-C(12)-C(13)	-40.2(4)
O(5)-C(12)-C(13)-C(14)	62.6(4)
C(3)-C(2)-C(14)-C(13)	-150.4(3)
C(1)-C(2)-C(14)-C(13)	24.0(4)
C(3)-C(2)-C(14)-C(15)	-26.6(4)
C(1)-C(2)-C(14)-C(15)	147.8(3)
C(12)-C(13)-C(14)-C(2)	-52.9(4)
C(12)-C(13)-C(14)-C(15)	-173.9(3)
O(7)-N(2)-C(15)-C(14)	-19.6(4)
O(6)-N(2)-C(15)-C(14)	162.3(3)
O(7)-N(2)-C(15)-C(4)	104.7(4)
O(6)-N(2)-C(15)-C(4)	-73.4(4)
C(2)-C(14)-C(15)-N(2)	177.2(3)
C(13)-C(14)-C(15)-N(2)	-61.6(4)
C(2)-C(14)-C(15)-C(4)	55.9(3)
C(13)-C(14)-C(15)-C(4)	177.2(3)
C(5)-C(4)-C(15)-N(2)	-57.9(3)
C(26)-C(4)-C(15)-N(2)	175.7(2)
C(5)-C(4)-C(15)-C(14)	65.6(3)
C(26)-C(4)-C(15)-C(14)	-60.8(3)
C(25)-O(10)-C(16)-O(8)	-20.9(4)
C(17)-O(8)-C(16)-O(10)	21.4(4)
C(16)-O(8)-C(17)-C(25)	-13.8(4)
C(16)-O(8)-C(17)-C(18)	169.7(4)
C(25)-C(17)-C(18)-C(19)	-1.2(5)
O(8)-C(17)-C(18)-C(19)	174.8(3)
C(17)-C(18)-C(19)-C(31)	0.4(5)
C(17)-C(18)-C(19)-C(20)	-177.2(3)
C(31)-C(19)-C(20)-C(30)	-144.0(3)
C(18)-C(19)-C(20)-C(30)	33.7(5)
C(31)-C(19)-C(20)-C(21)	92.0(4)
C(18)-C(19)-C(20)-C(21)	-90.3(4)
C(19)-C(20)-C(21)-N(1)	-57.0(4)
C(30)-C(20)-C(21)-N(1)	175.5(3)
C(19)-C(20)-C(21)-C(22)	67.0(4)
C(30)-C(20)-C(21)-C(22)	-60.5(4)
N(1)-C(21)-C(22)-C(23)	175.3(3)

C(20)-C(21)-C(22)-C(23)	54.0(3)
N(1)-C(21)-C(22)-C(28)	-65.4(3)
C(20)-C(21)-C(22)-C(28)	173.3(3)
C(21)-C(22)-C(23)-C(29)	-24.1(4)
C(28)-C(22)-C(23)-C(29)	-146.9(3)
C(21)-C(22)-C(23)-C(24)	153.9(3)
C(28)-C(22)-C(23)-C(24)	31.1(4)
C(27)-O(13)-C(24)-O(9)	178.8(3)
C(27)-O(13)-C(24)-C(23)	-1.1(5)
C(29)-C(23)-C(24)-O(9)	-3.6(5)
C(22)-C(23)-C(24)-O(9)	178.3(3)
C(29)-C(23)-C(24)-O(13)	176.3(3)
C(22)-C(23)-C(24)-O(13)	-1.8(5)
O(8)-C(17)-C(25)-C(32)	-175.7(3)
C(18)-C(17)-C(25)-C(32)	1.0(6)
O(8)-C(17)-C(25)-O(10)	0.8(4)
C(18)-C(17)-C(25)-O(10)	177.6(3)
C(16)-O(10)-C(25)-C(32)	-171.2(4)
C(16)-O(10)-C(25)-C(17)	12.5(4)
C(22)-C(21)-N(1)-O(12)	168.1(3)
C(20)-C(21)-N(1)-O(12)	-66.8(4)
C(22)-C(21)-N(1)-O(11)	-13.1(4)
C(20)-C(21)-N(1)-O(11)	112.0(4)
C(24)-O(13)-C(27)-C(28)	-27.2(4)
O(13)-C(27)-C(28)-C(22)	57.0(4)
C(23)-C(22)-C(28)-C(27)	-56.4(3)
C(21)-C(22)-C(28)-C(27)	-176.2(3)
C(24)-C(23)-C(29)-O(14)	1.2(5)
C(22)-C(23)-C(29)-O(14)	179.2(3)
C(24)-C(23)-C(29)-C(30)	-175.9(3)
C(22)-C(23)-C(29)-C(30)	2.1(5)
O(14)-C(29)-C(30)-C(20)	174.1(3)
C(23)-C(29)-C(30)-C(20)	-8.5(5)
C(19)-C(20)-C(30)-C(29)	-91.5(4)
C(21)-C(20)-C(30)-C(29)	35.4(4)
C(18)-C(19)-C(31)-C(32)	0.7(5)
C(20)-C(19)-C(31)-C(32)	178.4(3)
C(17)-C(25)-C(32)-C(31)	0.1(5)

O(10)-C(25)-C(32)-C(31)	-175.8(3)
C(19)-C(31)-C(32)-C(25)	-1.0(5)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(32)-H(29)O(1)#1	0.95	2.64	3.418(4)	139.5
C(30)-H(24)O(8)#2	0.99	2.47	3.278(5)	138.4
C(28)-H(21)O(11)	0.99	2.47	3.031(4)	115.7
C(28)-H(22)O(3)#3	0.99	2.58	3.327(4)	132.5
C(27)-H(19)O(7)#4	0.99	2.62	3.294(4)	125.2
C(22)-H(26)O(7)#4	1.00	2.56	3.277(4)	128.1
C(20)-H(28)O(8)#2	1.00	2.65	3.340(4)	126.3
C(15)-H(6)O(2)#5	1.00	2.62	3.274(4)	123.3
C(13)-H(8)O(7)	0.99	2.47	3.034(5)	115.6
C(12)-H(10)O(10)#6	0.99	2.63	3.286(4)	123.7
C(4)-H(12)O(11)#7	1.00	2.48	3.368(4)	147.5
O(14)-H(14A)O(9)	0.84	1.79	2.527(4)	145.2
O(4)-H(4A)O(9)#8	0.84	2.60	3.163(4)	125.4
O(4)-H(4A)O(1)	0.84	1.81	2.537(4)	144.4
C(32)-H(29)O(1)#1	0.95	2.64	3.418(4)	139.5
C(30)-H(24)O(8)#2	0.99	2.47	3.278(5)	138.4
C(28)-H(21)O(11)	0.99	2.47	3.031(4)	115.7
C(28)-H(22)O(3)#3	0.99	2.58	3.327(4)	132.5
C(27)-H(19)O(7)#4	0.99	2.62	3.294(4)	125.2
C(22)-H(26)O(7)#4	1.00	2.56	3.277(4)	128.1
C(20)-H(28)O(8)#2	1.00	2.65	3.340(4)	126.3
C(15)-H(6)O(2)#5	1.00	2.62	3.274(4)	123.3
C(13)-H(8)O(7)	0.99	2.47	3.034(5)	115.6
C(12)-H(10)O(10)#6	0.99	2.63	3.286(4)	123.7
C(4)-H(12)O(11)#7	1.00	2.48	3.368(4)	147.5
O(14)-H(14A)O(9)	0.84	1.79	2.527(4)	145.2
O(4)-H(4A)O(9)#8	0.84	2.60	3.163(4)	125.4
O(4)-H(4A)O(1)	0.84	1.81	2.537(4)	144.4
C(32)-H(29)O(1)#1	0.95	2.64	3.418(4)	139.5
C(30)-H(24)O(8)#2	0.99	2.47	3.278(5)	138.4
C(28)-H(21)O(11)	0.99	2.47	3.031(4)	115.7
C(28)-H(22)O(3)#3	0.99	2.58	3.327(4)	132.5
C(27)-H(19)O(7)#4	0.99	2.62	3.294(4)	125.2
C(22)-H(26)O(7)#4	1.00	2.56	3.277(4)	128.1

Table 7. Hydrogen bonds for cu_yd_lj4a_0m $\ \ [\mbox{\AA and } \mbox{\circ}].$

C(20)-H(28)O(8)#2	1.00	2.65	3.340(4)	126.3
C(15)-H(6)O(2)#5	1.00	2.62	3.274(4)	123.3
C(13)-H(8)O(7)	0.99	2.47	3.034(5)	115.6
C(12)-H(10)O(10)#6	0.99	2.63	3.286(4)	123.7
C(4)-H(12)O(11)#7	1.00	2.48	3.368(4)	147.5
O(4)-H(4A)O(1)	0.84	1.81	2.537(4)	144.4
O(4)-H(4A)O(9)#8	0.84	2.60	3.163(4)	125.4
O(14)-H(14A)O(9)	0.84	1.79	2.527(4)	145.2
C(4)-H(12)O(11)#7	1.00	2.48	3.368(4)	147.5
C(12)-H(10)O(10)#6	0.99	2.63	3.286(4)	123.7
C(13)-H(8)O(7)	0.99	2.47	3.034(5)	115.6
C(15)-H(6)O(2)#5	1.00	2.62	3.274(4)	123.3
C(20)-H(28)O(8)#2	1.00	2.65	3.340(4)	126.3
C(22)-H(26)O(7)#4	1.00	2.56	3.277(4)	128.1
C(27)-H(19)O(7)#4	0.99	2.62	3.294(4)	125.2
C(28)-H(22)O(3)#3	0.99	2.58	3.327(4)	132.5
C(28)-H(21)O(11)	0.99	2.47	3.031(4)	115.7
C(30)-H(24)O(8)#2	0.99	2.47	3.278(5)	138.4
C(32)-H(29)O(1)#1	0.95	2.64	3.418(4)	139.5
O(4)-H(4A)O(1)	0.84	1.81	2.537(4)	144.4
O(4)-H(4A)O(9)#8	0.84	2.60	3.163(4)	125.4
O(14)-H(14A)O(9)	0.84	1.79	2.527(4)	145.2
C(4)-H(12)O(11)#7	1.00	2.48	3.368(4)	147.5
C(12)-H(10)O(10)#6	0.99	2.63	3.286(4)	123.7
C(13)-H(8)O(7)	0.99	2.47	3.034(5)	115.6
C(15)-H(6)O(2)#5	1.00	2.62	3.274(4)	123.3
C(20)-H(28)O(8)#2	1.00	2.65	3.340(4)	126.3
C(22)-H(26)O(7)#4	1.00	2.56	3.277(4)	128.1
C(27)-H(19)O(7)#4	0.99	2.62	3.294(4)	125.2
C(28)-H(22)O(3)#3	0.99	2.58	3.327(4)	132.5
C(28)-H(21)O(11)	0.99	2.47	3.031(4)	115.7
C(30)-H(24)O(8)#2	0.99	2.47	3.278(5)	138.4
C(32)-H(29)O(1)#1	0.95	2.64	3.418(4)	139.5

Symmetry transformations used to generate equivalent atoms:

#1 x-1/2,-y+1/2,-z+2 #2 -x+1,y-1/2,-z+3/2 #3 -x+3/2,-y,z-1/2 #4 -x+1,y+1/2,-z+3/2 #5 -x+2,y+1/2,-z+3/2 #6 x+1/2,-y+1/2,-z+2 #7 x+1,y,z #8 -x+3/2,-y+1,z+1/2

5. HPLC Spectra for the Synthesized Compound 4

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Height [mAU]	Area %	
1 2	6.210 6.958	MM MM	0.1520 0.1736	526.55188 23.07751	57.71802 2.21560	95.8013 4.1987	