Supporting Information

Copper-catalyzed oxidative amidation of α, β-unsaturated ketone via selective C–H or C–C bond cleavage

Tony Wheellyam Pouambeka, Ge Zhang, Guang-Fan Zheng, Guo-Xing Xu, Qian Zhang, Tao Xiong,*and Qian Zhang*

Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024 China.

Table of Contents

I.	General InformationS2
II.	General Procedure forOxidative Cleavage C(vinyl)–H Bond of Ketone for the Synthesis of α-Amino Substituted Ketones 2 ······S3
III.	General Procedure for Oxidative Cleavage C(CO)–C(vinyl) Bond of Ketone for the Synthesis of enamide 3S3
IV.	Optimization of Oxidative Amidation of α, β-Unsaturated Ketonefor the synthesis of enamidesS4
V.	Control Experiments for Oxidative Amidation of α, β-Unsaturated KetoneS6
VI.	Stracture analysis x-ray crystallography of compound 2mS8
VII.	Characterization data of New compoundsS9
VIII.	¹ H and ¹³ C Spectra of New CompoundsS19

I. General Information

With the exception of Errors or omissions, all materials were purchased from commercial source and used as received. The melting points were obtained with a micro melting point XT4A Beijing Keyi electrooptic apparatus and are uncorrected. Ketones, namely α , β -unsaturated ketones **1** were prepared according to the previous literature.^[1-4]]H NMR Spectra were obtained at ambient temperature on a Varian 600 MHz, 500 MHz and 400 MHz, ¹³C NMR spectra were recorded at ambient temperature on a Varian 125 MHz, 150 MHz and TMS as internal standard. The chemical shifts (δ) were reported in parts per million (ppm) relative to internal standard TMS (0 ppm for H¹) and CDCl₃ (77.0 ppm for ¹³C). High resolution mass spectra were recorded on Bruck microtof. Coupling Constants (**J**) were then expressed in Hz. The signals have been described according to the following rule: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. All reactions were monitored by thin layer chromatography (TLC) using Machery-Nagel 0.20 mm silica gel 60 plates. Flash column chromatography was also realized on silica gel 60 (particle size 300-400 mesh ASTM, purchased from Taizhou, China) to increase the pressure.

1,4-dien-3-ketone **1a** (58.5 mg, 0.25 mmol), NFSI (157.5 mg, 0.5 mmol) and Cu(OAc)₂ (4.5 mg, 0.025 mmol) were placed in a round-bottomed flask containing a magnetic stirrer under N₂ atmosphere. 2.5 mL of dichloromethane (DCM) was dissolved. The mixture was then stirred at room temperature for five minutes. To the mixture was added acetic acid glacial (30 μ L, 0.5 mmol) and stirred for 24 hours at 70 °C (monitored by TLC). After the reaction was quenched with water, the aqueous layer was extracted with CH₂Cl₂ (3 × 5.0 mL) and the organic layers were combined, washed with water and brine (1 × 5 mL), and dried over Na₂SO₄. The organic layer was filtered, concentrated by rotary evaporation and purified by flash columm chromatography on silicate gel as solid phase and petroleum/ethyl acetate (25:1, v:v) as the eluent to give compound **2a** (103.1 mg, 78%) as a yellow solid.

III. General Procedure for Oxidative Cleavage of C(CO)–C(vinyl) Bond of Ketone for the Synthesis of β-Amino Styrenes 3

1,4-dien-3-ketone **1a** (46.8 mg, 0.2 mmol), NFSI (189 mg, 0.6 mmol) and Cu(OTf)₂ (7.7 mg, 0.02 mmol) were placed in a Schlenk-tube containing a magnetic stirrer under N₂ atmosphere. The acetonitrile (2 mL) was added as solvent. The mixture was then stirred at 100°C for 0.5 hours and monitored gradually by TLC. The resulting mixture was extracted with dichloromethane (3 ×10 mL). Next, the organic layer was dried over anhydrous Na₂SO₄. After removing the solvent, the residue was purified by column chromatography using the silicate gel as the solid phase and petroleum/ethyl acetate (25:1, v:v) as eluent to afford **3a** (64.6 mg, 81%) as a white solid.

IV. Optimization of Oxidative Amidation of α , β -Unsaturated Ketone for the synthesis of enamides.

1. Optimization of Oxidative Cleavage of C(vinyl)–H Bond of Ketone for the Synthesis of α -Amino Substituted Ketones 2^a

_

Ph	0	O ₂ Ph) ₂ Sc	Cat. (x mol%) plvent / Additive 70 ℃ Ph	Pr 2a	N(SO ₂ Ph) ₂ Ph	
Fntm	Catalyst (mal%)	Salvant	Additive (equiv)	т (° С)	Vield (%) ^b	
<u>Entry</u> 1		DCF	-	<u> </u>	0	
2	$Cu(OAc)_{2}$	DCE	-	70	10	
3	$Cu(OAc)_2$	DMF	-	70	0	
4	$Cu(OAc)_2$	PhCN	-	70	trace	
5	$Cu(OAc)_2$	CH ₃ OH	-	70	trace	
6	$Cu(OAc)_2$	Toluene	-	70	0	
7	$Cu(OAc)_2$	DCM	-	70	43	
8	$Cu(OAc)_2$	CH ₃ CN	-	70	27	
9	$Cu(OAc)_2$	DCM	CH ₃ OH (1.0)	70	39	
10 ^c	Cu(OAc) ₂	DCM	Zn(OTf) ₂	70	42	
11	Cu(OAc) ₂	DCM	TFA (1.0)	70	51	
12	Cu(OAc) ₂	DCM	TFA (2.0)	70	56	
13	$Cu(OAc)_2$	DCM	CH ₃ COOH (1.0)	70	60	
14	Cu(OAc) ₂	DCM	CH ₃ COOH (2.0)	70	78	
15	CuBr	DCM	CH ₃ COOH (2.0)	70	14	
16	CuCl	DCM	CH ₃ COOH (2.0)	70	16	
17	CuI	DCM	CH ₃ COOH (2.0)	70	11	
18	$CuCl_2$	DCM	CH ₃ COOH (2.0)	70	41	
19	Cu(OTf) ₂	DCM	CH ₃ COOH (2.0)	70	63	
20	$Cu(NO_3)_2 \cdot 3H_2O$	DCM	CH ₃ COOH (2.0)	70	32	
21 ^d	Cu(OAc) ₂	DCM	CH ₃ COOH (2.0)	70	47	

^aReaction conditions: **1a** (0.25 mmol), NFSI (2.0 equiv), Cat (10 mol%), additives (x equiv), and solvent (2 mL) under N₂ atmosphere at 70 °C for 24 h. ^bYield of the isolated product.^cZn(OTf)₂ (10 mol%).^dThe reaction was performed in the presence of 10% of Phen = 1,10-phenanthroline. TFA = trifluoroacetic acid, DMF = dimethylformamide, DCM = dichloromethane, DCE = 1,2-dichloroethene.

	+ F	⁻ −N(SO ₂ Ph) ₂	Cat. (x mol%)	Ph	N(SO ₂ Ph)	2	
	Ph ^{Ph} Ph 1a		Solvent / Additive 100 °C		3a		
Entry	Catalyst (mol%)	Solvent	Additive (equiv)	T(°C)	times (h)	Yield(%) ^b	
1	-	DCM	-	70	24	0	
2	CuBr	DCM	-	70	24	12	
3	CuCl	DCM	-	70	24	10	
4	CuCN	DCM	-	70	24	9	
5	$Cu(OAc)_2$	CH ₃ CN		70	24	33	
6	Cu(OTf) ₂	DCM	-	70	24	20	
7	Cu(OTf) ₂	CH ₃ CN	-	70	2	42	
8	Cu(OTf) ₂	CH ₃ CN	-	70	1	56	
9	$Cu(OAc)_2$	CH ₃ CN	-	70	1	51	
10	CuCl ₂	CH ₃ CN	-	70	1	11	
11	CuBr ₂	CH ₃ CN	-	70	1	8	
12	Cu(OTf) ₂	CH ₃ CN	-	100	1	68	
13	Cu(OTf) ₂	CH ₃ CN	-	100	0.5	81	
14	Cu(OTf) ₂	DCE	-	100	0.5	13	
15	Cu(OTf) ₂	DMF	-	100	0.5	Trace	
16	Cu(OTf) ₂	THF	-	100	0.5	Trace	
17	Cu(OTf) ₂	PhCl	-	100	0.5	Trace	
18	Cu(OTf) ₂	DMSO	-	100	0.5	Trace	
19	Cu(OTf) ₂	Toluene	-	100	0.5	0	
20	Cu(OTf) ₂	CH ₃ NO ₂	-	100	0.5	11	
21	$Cu(OAc)_2$	CH ₃ CN	-	100	0.5	62	
22	$Cu(OAc)_2$	CH ₃ CN	Phen (2.0)	100	0.5	11	
23	$Cu(OAc)_2$	CH ₃ CN	Pyridine (2.0)	100	0.5	9	
24	$Cu(OAc)_2$	CH ₃ CN	PPh ₃ (2.0)	100	0.5	0	
25	$Cu(OAc)_2$	CH ₃ CN	ddpe (2.0)	100	0.5	0	

2. Optimization of Oxidative Cleavage of C(CO)-C(vinyl) Bond of Ketone for the Synthesis of β-Amino Styrenes 3^a

O

^aReaction conditions: 1a (0.2 mmol), NFSI (0.6 mmol), Cu(OTf)₂ (10 mol%), solvent (2 mL) under N_2 atmosphere.^bIsolated yield. DCM = dichloromethane, TFA = trifluoroacetic acid, DMF = dimethylformamide, THF = tetrahydrofuran, DMSO = dimethylsulfoxide, Phen = 1,10phenanthroline, $PPh_3 = triphenylphosphine$, dppe = 1,2-Bis(diphenylphosphino)ethane.

V. Control Experiments for Oxidative Amidation of α, β-Unsaturated Ketone

- 1. Control Experiments for Oxidative Cleavage of C(vinyl)-H Bond of Ketone
- 1.1 The reaction of 1a with NFSI under O_2 atmosphere

The reaction of 1,4-dien-3-ketone **1a** (58.5 mg, 0.25 mmol), $Cu(OAc)_2$ (4.5 mg, 0.025 mmol), *N*-Fluorobenzenesulfonimide (157.5 mg, 0.6 mmol), acetic acid (30 µL, 0.5 mmol), and dichloromethane (2.5 mL) at 70 °C under O₂ atmosphere afforded a trace of compound **2a**.

1.2 Experimental Procedure for Oxidative Cleavage C(vinyl)-H Bond of Ketone with TEMPO

1,4-dien-3-ketone **1a** (58.5 mg, 0.25 mmol), NFSI (157.5 mg, 0.5 mmol), 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) (62.5 mg, 0.4 mmol) and Cu(OAc)₂ (4.4 mg, 0.025 mmol) were placed in a round-bottomed flask containing a magnetic stirrer under N₂ atmosphere. 2.5 mL of dichloromethane (DCM) was dissolved. The mixture was then stirred at room temperature for five minutes. To the mixture was added acetic acid glacial (30 μ L, 0.5 mmol) and stirred for 24 hours at 70 °C (monitored by TLC). Upon completion of the reaction (monitored by TLC), the amidation product **2a** was found and then purified by flash column chromatography on silicate gel as solid phase and petroleum/ethyl acetate (25:1, v:v) as the eluent with 10 % yield.

2. Control Experiments for Oxidative Cleavage of C(CO)–C(vinyl) Bond of Ketone 2.1 The reaction of 1a with NFSI under O_2 atmosphere

1,4-dien-3-ketone **1a** (46.8 mg, 0.2 mmol), Cu(OTf)₂ (7.7 mg, 0.02 mmol), *N*-Fluorobenzenesulfonimide (236 mg, 0.6 mmol), and acetonitrile (CH₃CN) (2.0 mL) were placed in 25 ml round-bottom flask. The flask was sealed with a rubber septum and degassed and refilled with O_2 (3 times). Then, the reaction flask was heated at 70 °C in a preheated oil bath for 2 hours. The resulting solution was extracted with dichloromethane (3 × 10 mL), and the combined organic layer was washed with brin solution (10 mL) and concentrated in *vacuo*. The crude residue was purified using silica gel column chromatography with petrolum ether / ethyl acetate (20:1) as the eluent to afford the corresponding amidation product **3a** at 20 % yield.

2.2 Experimental Procedure Oxidative Cleavage C(CO)–C(vinyl) Bond of Ketone with TEMPO

1,4-dien-3-ketone **1a** (46.8 mg, 0.2 mmol), NFSI (189 mg, 0.6 mmol), 2,2,6,6-tetramethyl-1piperidinyloxy (TEMPO) (62.5 mg, 0.4 mmol) and Cu(OTf)₂ (7.7 mg, 0.02 mmol) were placed in a Schlenk-tube containing a magnetic stirrer under N₂ atmosphere. The acetonitrile (2mL) was added as solvent. The mixture was then stirred at 100°C for 2 hours and monitored gradually by TLC. Upon completion of the reaction (monitored by TLC), the amidation product **3a** was found and then purified by flash column chromatography on silicate gel as solid phase and petroleum/ethyl acetate (25:1, v:v) as the eluent with 8 % yield.

VI. Stracture analysis X-ray crystallography of compound 2m (CCDC: 1518182)

Crystal data and structure refinement for (E)-2m

Compound	(<i>E</i>)-2r
Empirical formula	$C_{30}H_{22}F_3NO_5S_2$
Formula weight	597.62
Crystal system	Monoclinic
Space group	P 21
Hall group	P 2ac 2ab
Temperature (K)	293
Bond precision C-C (Å)	0.0082
Wavelength	0.71069
<i>a</i> (Å)	8.086 (5)
<i>b</i> (Å)	14.196 (5)
<i>c</i> (Å)	23.304 (5)
α(°)	90
β(°)	90
γ(°)	90
V (Å ³)	2675 (2)
Z	4
D/g cm ⁻³	1.476
μ/mm^{-1}	0.263
F (000)	1220.0
h, k, l _{max}	9, 16, 27
Nref	4728 [2702]
Data completeness	1.75 / 1.00
Theta (max)	25.000
R(reflections)	0.0640 (3493)
wR ₂ (reflections)	0.1534 (4725)
S	1.030
Npar	370

VII. Characterization data of New compounds

1. Characterization data of compound 2

*N-((1Z,4E)-3-*oxo-1,5-diphenylpenta-1,4-dien-2-yl)-*N*-(phenylsulfonyl)benzenesulfonamide (2a)

Purified by flash column chromatography (eluent: petroleum ether / EtOAc = 25:1); yellow solid (103.0 mg, 78%); mp: 209 – 210 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.05 (d, *J* = 15.6 Hz, 1H), 7.13 (t, *J* = 8.0 Hz, 2H), 7.15 – 7.26 (m, 3H), 7.35 – 7.39 (m, 8H), 7.50 (t, *J* = 7.6 Hz, 2H), 7.62 (t, *J* = 6.4 Hz, 3H), 7.98 (d, *J* = 6.8 Hz, 4H). ¹³C NMR (125 MHz; CDCl₃): δ = 120.9, 128.5, 128. 6, 128.7, 128.8, 129.2, 129.6, 130.6, 131.2, 131.3, 131.6, 134.1, 134.5, 139.4, 144.7, 145.0, 186.7. HRMS (ESI-TOF) calcd for C₂₉H₂₃NNaO₅S₂, [M+Na]⁺ 552.0915 Found 552.0917.

N-((*1Z*,*4E*)-3-oxo-1,5-di-*p*-tolylpenta-1,4-dien-2-yl)-(phenylsulfonyl)benzenesulfonamide (2b)

Purified by flash column chromatography (eluent: petroleum ether / EtOAc = 25:1); yellow solid (84.94 mg, 61%); mp: 209 – 210 °C; ¹H NMR (500 MHz, CDCl₃): δ = 2.30 (s, 3H), 2.38 (s, 3H), 6.93 (d, *J* = 8.0 Hz, 2H), 7.00 (d, *J* = 15.5 Hz, 1H), 7.14 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 8.5 Hz, 3H), 7.37 (t, *J* = 7.5 Hz, 4H), 7.49 – 7.53 (m, 4H), 7.57 (d, *J* = 15.5 Hz, 1H), 7.97 (t, *J* = 7.5 Hz, 4H). ¹³C NMR (125 MHz; CDCl₃): δ = 21.5, 21.6, 120.0, 128.4, 128.5, 128.6, 128.8, 128.9, 129.2, 129.6, 131.4, 133.9, 134.1, 139.1, 141.1, 142.1, 144.6, 145.1, 186.8. HRMS (ESI-TOF) calcd for C₃₁H₂₇NaNO₅S₂, [M+H]⁺ 558.1228 Found 558.1218.

*N-((1Z,4E)-3-*oxo-1,5-di-*m*-tolylpenta-1,4-dien-2-yl)-*N*-(phenylsulfonyl)benzenesulfona mide (2c)

Purified by flash column chromatography (eluent: petroleum ether / EtOAc = 25:1); yellow solid (66.83 mg, 48%); mp: 210 – 211 °C; ¹H NMR (500 MHz, CDCl₃): δ = 2.15 (s, 3H), 2.40 (s, 3H), 7.06 – 7.10 (m, 3H), 7.19 – 7.29 (m, 4H), 7.41 (t, *J* = 15.5 Hz, 5H), 7.48 (s, 1H), 7.53 (t, *J* = 7.5 Hz, 2H), 7.63 (d, *J* = 15.5 Hz, 1H), 7.98 – 8.03 (m, 5H) ¹³C NMR (125 MHz; CDCl₃): δ = 21.2, 21.3, 120.8, 125.9, 128.4, 128.5, 128.6, 128.8, 128.9, 129.0, 129.2, 129.6, 130.8, 131.4, 132.3, 134.0, 134.5, 138.2, 138.3, 139.5, 144.9, 145.1, 186.8. HRMS (ESI-TOF) calcd for C₃₁H₂₇NNaO₅S₂, [M+Na]⁺ 580.1228 Found 580.1241.

*N-((1Z,4E)-3-*oxo-1,5-di-o-tolylpenta-1,4-dien-2-yl)-*N*-(phenylsulfonyl)benzenesulfonami de (2d)

Purified by flash column chromatography (eluent: petroleum ether / EtOAc = 25:1); yellow solid (78.0 mg, 56%); mp: 206 – 207 °C; ¹H NMR (500 MHz, CDCl₃): δ = 2.41 (s, 3H), 2.45 (s, 3H), 6.94 (t, *J* = 5.0 Hz, 1H), 7.07 (d, *J* = 15.0 Hz, 1H), 7.20 – 7.24 (m, 4H), 7.28-7.39 (m, 6H), 7.49 (t, *J* = 5.0 Hz, 2H), 7.81 (d, *J* = 5.0 Hz, 1H), 7.86 (d, *J* = 15.0 Hz, 4H), 7.94 (d, *J* = 15.0 Hz, 1H), 8.16 (s, 1H). ¹³C NMR (125 MHz; CDCl₃): δ = 19.8, 20.2, 121.8, 125.4, 125.9, 126.2, 126.3, 128.4, 129.1, 130.1, 131.3, 132.6, 133.3, 133.8, 134.0, 138.1, 138.3, 139.2, 140.3, 142.4, 143.4, 145.2, 186.8. HRMS (ESI-TOF) calcd for C₃₁H₂₈NO₅S₂, [M+H]⁺ 558.1409 Found 558.2350.

N-((1Z,4E)-1,5-bis(4-chlorophenyl)-3-oxopenta-1,4-dien-2-yl)-*N-(*phenylsulfonyl)benzenesu lfonamide (2e)

Purified by flash column chromatography (eluent: petroleum ether / EtOAc = 25:1); yellow solid (108.9 mg, 73%); mp: 219 – 220 °C; ¹H NMR (500 MHz, CDCl₃): δ = 6.95 (d, *J* = 15.5 Hz, 1H), 7.08 (t, *J* = 8.0Hz, 1H), 7.25 -7.30 (m, 5H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.40 (t, *J* = 7.5 Hz, 3H), 7.45 (d, *J* = 7.5 Hz, 1H), 7.91 – 8.01 (m, 4H), 7.91 (s, 1H), 8.01 (d, *J* = 7.5 Hz, 4H). ¹³C NMR (125 MHz; CDCl₃): δ =121.7, 127.0, 127.5, 128.6, 129.3, 129.5, 129.9, 130.3, 130.4, 133.1, 134.3, 134.4, 136.0, 138.9, 143.1, 143.2, 186.1. HRMS (ESI-TOF) calcd for C₂₉H₂₁Cl₂NO₅S₂, [M+H]⁺ 598.0316 Found 598.0465.

N-((1Z,4E)-1,5-bis(4-fluorophenyl)-3-oxopenta-1,4-dien-2-yl)-*N*-(phenylsulfonyl)benzene sulfonamide (2f)

Purified by flash column chromatography (eluent: petroleum ether / EtOAc = 25:1); yellow solid (114.4 mg, 81%); mp: 220 – 222 °C; ¹H NMR (400 MHz, CDCl₃): δ = 6.80 (t, *J* = 8.4 Hz, 2H), 6.91 (d, *J* = 15.6 Hz, 1H), 7.03 (t, *J* = 8.4 Hz, 2H), 7.26 – 731 (m, 2H), 7.39 (t, *J* = 8.4 Hz, 4H), 7.51 – 7.59 (m, 3H), 7.58 – 7.60 (m, 2H), 7.95 – 8.00 (m, 5H). ¹³C NMR (125 MHz; CDCl₃): δ = 115.7, 115.8, 115.9, 120.5, 128.6, 128.8, 129.1, 129.5, , 130.4, 130.5, 133.5, 133.7, 134.2, 139.3, 143.4, 143.5, 186.5. HRMS (ESI-TOF) calcd for C₂₉H₂₂F₂NO₅S₂, [M+H]⁺ 566.0907 Found 566.1031.

N-((*1Z*,*4E*)-1,5-bis(4-bromophenyl)-3-oxopenta-1,4-dien-2-yl)-*N*-(phenylsulfonyl)benzene sulfonamide (2g)

Purified by flash column chromatography (eluent: petroleum ether / EtOAc = 25:1); yellow solid (143.8 mg, 84%); mp: 210 – 213 °C; ¹H NMR (500 MHz, CDCl₃): δ = 6.95 (d, *J* = 15.5 Hz, 1H), 7.06 (d, *J* = 8.5 Hz, 2H), 7.23-7.25 (m, 3H), 7.31 (d, *J* = 8.5 Hz, 2H), 7.39 (t, *J* = 8.0 Hz, 4H), 7.49 (d, *J* = 8.5 Hz, 2H), 7.53 – 7.56 (m, 3H), 7.93 – 7.98 (m, 4H). ¹³C NMR (125 MHz; CDCl₃): δ =. 121.2, 128.7, 128.8, 128.9, 129.0, 129.1, 129.2, 129.5, 131.2, 132.3, 134.2, 136.6, 137.5, 139.2, 143.4, 143.5, 186.4. HRMS (ESI-TOF) calcd for C₂₉H₂₁Br₂NNaO₅S₂, [M+Na]⁺ 707.9105 Found 707.9112.

N-((*1Z*,*4E*)-1,5-bis(3-bromophenyl)-3-oxopenta-1,4-dien-2-yl)-*N*-(phenylsulfonyl)benzene sulfonamide (2h)

Purified by flash column chromatography (eluent: petroleum ether / EtOAc = 25:1); yellow solid (87.3 mg, 51%); mp: 210 – 212 °C; ¹H NMR (500 MHz, CDCl₃): δ = 6.81 (t, *J* = 8.5 Hz, 2H), 7.02 (d, *J* = 15.5 Hz, 1H), 7.33 – 7.40 (m, 6H), 7.52 (t, *J* = 7.5 Hz, 3H), 7.58 – 7.63 (m, 4H), 7.95 – 7.99 (m, 5H). ¹³C NMR (125 MHz; CDCl₃): δ = 121.2, 124.2, 128.7, 128.8, 128.9, 129.0, 129.1, 129.5, 131.2, 132.3, 132.9, 134.2, 134.3, 136.6, 137.5, 139.2, 142.0, 143.4, 143.5, 144.2, 186.3. HRMS (ESI-TOF) calcd for C₂₉H₂₂Br₂NNaO₅S₂, [M+Na]⁺ 707.9105 Found 707.9102.

N-((1Z,4E)-5-(4-fluorophenyl)-3-oxo-1-phenylpenta-1,4-dien-2-yl)-*N*-(phenylsulfonyl)ben zenesulfonamide (2k)

Purified by flash column chromatography (eluent: petroleum ether / EtOAc = 25:1); yellow solid (55.8 mg, 51%); mp: 204 – 205 °C; ¹H NMR (400 MHz, CDCl₃): δ = 6.82 (t, *J* = 8.8 Hz, 2H), 7.01 (d, *J* = 15.6 Hz, 1H), 7.32 – 7.40 (m, 8H), 7.54 (t, *J* = 2.4 Hz, 3H), 7.58 – 7.63 (m, 4H), 7.95 – 7,99 (m, 4H). ¹³C NMR (125 MHz; CDCl₃): δ = 115.7, 115.9, 120.7, 120.8, 127.9, 128.6, 129.2, 129.6, 130.7, 133.6, 133.6, 134.2, 139.3, 139.4, 143.5, 144.8, 186.6. HRMS (ESI-TOF) calcd for C₂₉H₂₂FNNaO₅S₂, [M+Na]⁺ 570.0821 Found 570.0804.

N-((1Z,4E)-5-(3-bromophenyl)-3-oxo-1-phenylpenta-1,4-dien-2-yl)-N-(phenylsulfonyl)ben ze nesulfonamide (2l)

Purified by flash column chromatography (eluent: petroleum ether / EtOAc = 25:1); yellow solid (74.4 mg, 49%); mp: 207–208 °C; ¹H NMR (400 MHz, CDCl₃): δ = 6.96 (d, *J* = 16.0 Hz, 1H), 7.13 (t, *J* = 8.0 Hz, 2H), 7.21 – 7.25 (m, 3H), 7.34 – 7.40 (m, 6H), 7.49 – 7.54 (m, 4H), 7.78 (d, *J* = 7.2 Hz, 2H), 7.98 – 8.00 (m, 4H). ¹³C NMR (125 MHz; CDCl₃): δ = 122.2, 122.8, 127.6, 128.5, 128.8, 129.5, 130.6, 131.4, 131.5, 133.3, 133.4, 134.0, 134.3, 136.6, 139.3, 142.8, 145.3, 186.5. HRMS (ESI-TOF) calcd for C₂₉H₂₂BrNNaO₅S₂, [M+Na]⁺ 630.0020 Found 630.0104.

N-((1Z,4E)-3-oxo-1-phenyl-5-(4-(trifluoromethyl)phenyl)penta-1,4-dien-2-yl)-*N*-(phenyl sulfonyl)benzenesulfonamide (2m)

Purified by flash column chromatography (eluent: petroleum ether / EtOAc = 25:1); yellow solid (89.6 mg, 60%); mp: 239 – 240 °C; ¹H NMR (400 MHz, CDCl₃): δ =7.06 (s, 1H), 7.12 (t, *J* = 8.0 Hz, 3H), 7.25 (t, *J* = 4.8 Hz, 1H), 7.35 – 7.49 (m, 5H), 7.42 (2, *J* = 8.0 Hz, 2H), 7.47 – 7.51 (m, 2H), 7.57 – 7.60 (m, 4H), 7.97 – 7.99 (m, 4H). ¹³C NMR (125 MHz; CDCl₃): δ = 123.3, 125.6, 125.7, 128.2, 128.5, 128.6, 128.7, 129.6, 130.6, 131.4, 131.6, 132.0, 134.2, 137.8, 139.3, 142.5, 145.5, 186.6. HRMS (ESI-TOF) calcd for C₃₀H₂₃F₃NO₅S₂, [M+H]⁺ 598.0970 Found 598.0256.

(Z)-N-(3-oxo-1-phenylbut-1-en-2-yl)-N-(phenylsulfonyl)benzenesulfonamide (2n)

Purified by flash column chromatography (eluent: petroleum ether / EtOAc = 25:2); Yellow solid (29.9 mg, 34%); mp: 195 – 200 °C¹H NMR (600 MHz, CDCl₃): δ =2.39 (s, 3H), 7.16 (t, *J* = 7.8 Hz, 2H), 7.27 (t, *J* = 7.2 Hz, 1H), 7.40 (t, *J* = 7.8 Hz, 4H), 7.56 (t, *J* = 7.2 Hz, 2H), 7.61 (d, *J* = 7.8 Hz, 2H), 7.75 (s, 1H), 7.91 (d, *J* = 7.8 Hz, 4H). ¹³C NMR (125 MHz; CDCl₃): δ = 25.8, 128.4, 128.5, 129.5, 131.1, 131.2, 131.3, 131.5, 134.0, 139.5, 145.9, 194.3. HRMS (ESI-TOF) calcd for C₂₂H₁₉NNaO₅S₂, [M+Na]⁺ 464.0602 Found 464.0600.

2. Characterization data of compound 3

(E)-N-(phenylsulfonyl)-N-styrylbenzenesulfonamid (3a)

Purified by flash column chromatography (eluent: petroleum ether / EtOAc = 25:1); white solid (64.6 mg, 81%); mp: 171 – 172 °C; ¹H NMR (400 MHz; CDCl₃): δ = 6.53 (d, *J* = 13.6 Hz,1H), 6.69 (d, *J* = 13.6 Hz, 1H), 7.34 – 7.37 (m, 5H), 7.56 (t, *J* = 8.0 Hz, 4H), 7.68 (t, *J* = 7.6 Hz, 2H), 8.00 (dd, *J*₁₂ = 1.2 Hz, *J*₁₃ = 8.8 Hz, 4H). ¹³C NMR (125 MHz; CDCl₃): δ = 119.4, 127.2, 128.1, 128.8, 129.1, 129.4, 133.7, 134.0, 139.1, 139.4. HRMS (ESI-TOF) calcd for C₂₀H₁₇NNaO₄S₂, [M+Na]⁺ 422.0497 Found 422.0502.

3b

(E)-N-(4-methylstyryl)-N-(phenylsufonyl)benzenesulfonamide (3b)

Purified by flash column chromatography (eluent: petroleum ether / EtOAc = 25:1); white solid (68.40 mg, 76%); mp: 134 – 135°C; ¹H NMR (400 MHz, CDCl₃): δ = 2.36 (s, 3H), 6.46 (d, *J* = 13.6 Hz, 1H), 6.64 (d, *J* = 14.0 Hz, 1H), 7.15 (d, *J* = 7.6 Hz, 2H), 7.25 (d, *J* = 7.2 Hz, 2H), 7.56 (t, *J* = 8.0 Hz, 4H), 7.67 (t, *J* = 7.2 Hz, 2H), 7.99 (d, *J* = 8.0 Hz, 4H). ¹³C NMR (125 MHz; CDCl₃): δ = 21.3, 118.3, 127.2, 128.2, 129.0, 129.5, 130.9, 133.9, 139.3, 139.5, 139.6. HRMS (ESI-TOF) calcd for C₂₁H₁₉NNaO₄S₂, [M+Na]⁺ 436.0653 Found 436.0642.

(E)-N-(4-methylstyryl)-N-(phenylsufonyl)benzenesulfonamide (3c)

Purified by flash column chromatography (eluent: petroleum ether / EtOAc = 25:1); white solid (58.0 mg, 70%); mp: 132 – 134 °C; ¹H NMR (400 MHz, CDCl₃): δ = 2.35 (s, 3H), 6.51 (d, *J* = 13.6 Hz, 1H), 6.65 (d, *J* = 14.0 Hz, 1H), 7.15-7.19 (m, 3H), 7.24 (t, *J* = 6.4 Hz, 1H), 7.57 (t, *J* = 8.0 Hz, 4H), 7.65 – 7.69 (m, 2H), 8.00 (d, *J* = 7.2 Hz, 4H). ¹³C NMR (125 MHz; CDCl₃): δ = 21.3, 119.1, 124.4, 127.8, 128.0, 128.1, 128.7, 129.1, 133.6, 133.9, 136.0, 138.5, 139.3. HRMS (ESI-TOF) calcd for C₂₁H₁₉NNaO₄S₂, [M+Na]⁺ 436.0653 Found 436.0651.

(E)-N-(2-methylstyryl)-N-(phenylsufonyl)benzenesulfonamide (3d)

Purified by flash column chromatography (eluent: petroleum ether / EtOAc = 25:1); white solid (53.7 mg, 65%); mp: 130 – 132 °C; ¹H NMR (400 MHz, CDCl₃): δ = 2.50 (s, 3H), 6.4 (d, *J* = 13.6 Hz, 1H), 7.16 (d, *J* = 13.6 Hz, 1H), 7.44 – 7.52 (m, 3H), 7.66 (d, *J* = 6.8 Hz, 1H), 7.84 (t, *J* = 7.2 Hz, 4H), 7.95 (t, *J* = 7.2 Hz, 2H), 8.29 (d, *J* = 7.2 Hz, 4H). ¹³C NMR (125 MHz; CDCl₃): δ = 19.7, 120.3, 126.2, 126.3, 128.1, 129.1, 129.2, 130.5, 132.8, 133.9, 136.6, 137.9, 139.5. HRMS (ESI-TOF) calcd for C₂₁H₂₀NO₄S₂, [M+H]⁺ 414.0828 Found 414.0837.

(E)-N-(4-chlorostyryl)-N-(phenylsufonyl)benzenesulfonamide (3e)

Purified by flash column chromatography (eluent: petroleum ether / EtOAc = 25:1); white solid (61.14 mg, 65%); mp: 154 – 155 °C; ¹H NMR (400 MHz, CDCl₃): δ = 6.51 (d, *J* = 13.6 Hz, 1H), 6.65 (d, *J* = 13.6 Hz, 1H), 7.56 – 7.33 (m, 4H), 7.67 (t, *J* = 8.0 Hz, 4H), 7.69 (t, *J* = 7.2 Hz, 2H), 7.99 (d, *J* = 7.6 Hz, 4H). ¹³C NMR (125 MHz; CDCl₃): δ = 120.0, 128.1, 128.4, 129.0, 129.1, 132.2, 134.1, 135.2, 137.4, 139.4. HRMS (ESI-TOF) calcd for C₂₀H₁₆ClNNaO₄S₂, [M+Na]⁺ 456.0107 Found 456.0496.

F 3f

(E)-N-(4-fluorostyryl)-N-(phenylsufonyl)benzenesulfonamide (3f)

Purified by flash column chromatography (eluent: petroleum ether / EtOAc = 25:1); white solid (51.7 mg, 62%); mp: 156 – 158 °C; ¹H NMR (400 MHz, CDCl₃): δ = 6.45 (d, *J* = 13.6 Hz, 1H), 6.65 (d, *J* = 14.0 Hz, 1H), 7.04 (t, *J* = 8.4 Hz, 2H), 7.32 – 7.35 (m, 2H), 7.57 (t, *J* = 8.0 Hz, 4H), 7.69 (t, *J* = 7.2 Hz, 2H), 7.99 (d, *J* = 7.2 Hz, 4H). ¹³C NMR (125 MHz; CDCl₃): δ = 115.8, 116.0, 119.1, 128.2, 128.9, 129.1, 134.0, 137.9, 139.4, 141.9 HRMS (ESI-TOF) calcd for C₂₀H₁₆FNNaO₄S₂, [M+Na]⁺ 440.0402 Found 440.0417.

(E)-N-(4-bromostyryl)-N-(phenylsufonyl)benzenesulfonamide (3g)

Purified by flash column chromatography (eluent: petroleum ether / EtOAc = 25:1); white solid (65.1 mg, 68%); mp: 153 – 154 °C; ¹H NMR (400 MHz, CDCl₃): δ = 6. 53 (d, *J* = 13.6 Hz, 1H), 6.64 (d, *J* = 13.6 Hz, 1H), 7.22 (d, *J* = 8.4 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 7.57 (t, *J* = 8.4 Hz, 4H), 7.67 (t, *J* = 7.2 Hz, 2H), 7.99 (d, *J* = 7.2 Hz, 4H). ¹³C NMR (125 MHz; CDCl₃): δ = 119.4, 127.2, 128.2, 128.8, 129.1, 129.4, 133.7, 134.0, 139.1, 139.5. HRNS (ESI-TOF) calcd for C₂₀H₁₇BrNO₄S₂, [M+H]⁺ 477.9777; Found 477.9781

(E)-N-(3-bromostyryl)-N-(phenylsufonyl)benzenesulfonamide (3h)

Purified by flash column chromatography (eluent: petroleum ether / EtOAc = 25:1); white solid (54.3 mg, 57%); mp: 150 – 152 °C; ¹H NMR (400 MHz, CDCl₃): δ = 6.56 (d, *J* = 14.0 Hz, 1H), 6.65 (d, *J* = 14.0 Hz, 1H), 7.22 – 7.27 (m, 2H), 7.46 (d, *J* = 7.6 Hz, 1H), 7.51 (s, 1H), 7.58 (t, *J* = 8.0 Hz, 4H), 7.69 (t, *J* = 7.2 Hz, 2H), 8.00 (dd, *J*₁₂ = 1.6 Hz, *J*₁₃ = 8.0 Hz, 4H). ¹³C NMR (125 MHz; CDCl₃): δ = 120.8, 122.9, 125.8, 128.1, 129.1, 129.8, 130.3, 132.1, 134.1, 135.8, 136.8, 139.3. HRMS (ESI-TOF) calcd for C₂₀H₁₆BrNNaO₄S₂, [M+Na]⁺ 499.9596 Found 499.9587.

(E)-N-(4-(tert-butyl)styryl)-N-(phenylsufonyl)benzenesulfonamide (3p)

Purified by flash column chromatography (eluent: petroleum ether / EtOAc = 25:1); white solid (66.4 mg, 73%); mp: 136 – 138 °C; ¹H NMR (400 MHz, CDCl₃): δ = 1.32 (s, 9H), 6.49 (d, *J* = 13.6 Hz, 1H), 6.66 (d, *J* = 13.6 Hz, 1H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.38 (d, *J* = 8.4 Hz, 2H), 7.57 (t, *J* = 8.0 Hz, 4H), 7.64 – 7.69 (m, 2H), 8.00 (dd, *J*₁₂ = 1.6 Hz, *J*₁₃ = 8.0 Hz, 4H). ¹³C NMR (125 MHz; CDCl₃): δ = 31.2, 34.8, 118.5, 125.7, 127.0, 128.1, 129.1, 130.9, 133.9, 139.1, 139.5, 152.8. HRMS (ESI-TOF) calcd for C₂₄H₂₆NO₄S₂, [M+H]⁺ 456.1298 Found 456.1291.

(E)-N-(4-methoxystyryl)-N-(phenylsufonyl)benzenesulfonamide (3q)

Purified by flash column chromatography (eluent: petroleum ether / EtOAc = 25:1); white solid (26.6 mg, 31%); mp: 129 – 131°C; ¹H NMR (400 MHz, CDCl₃): δ = 3.82 (s, 3H), 6.37 (d, *J* = 13.6 Hz, 1H), 6.60 (d, *J* = 13.6 Hz, 1H), 6.87 (d, *J* = 8.8 Hz, 2H), 7.30 (d, *J* = 8.8 Hz, 2H), 7.56

(t, J = 8.0 Hz, 4H), 7.67 (t, J = 7.2 Hz, 2H), 7.99 (d, J = 7.6 Hz, 4H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 55.4$, 114.2, 117.0, 126.3, 128.2, 128.7, 129.1, 133.9, 139.3, 139.5, 160.5. HRMS (ESI-TOF) calcd for C₂₁H₁₉NNaO₅S₂, [M+Na]⁺ 452.0602 Found 452.0813.

(E)-N-(2,4-dimethylstyryl)-N-(phenylsufonyl)benzenesulfonamide (3r)

Purified by flash column chromatography (eluent: petroleum ether / EtOAc = 25:1); white solid (66.6 mg, 78%); mp: 152–153°C; ¹H NMR (400 MHz, CDCl₃): δ = 2.18 (s, 3H), 2.31 (s, 3H), 6.33 (d, *J* = 13.6 Hz, 1H), 6.84 (d, *J* = 13.6 Hz, 1H), 6.99 (d, *J* = 5.6 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 1H), 7.53 – 7.57 (m, 4H), 7.64 – 7.69 (m, 2H), 8.00 (d, *J* = 7.2 Hz, 4H). ¹³C NMR (125 MHz; CDCl₃): δ = 19.6, 21.2, 119.3, 126.2, 126.9, 128.1, 129.1, 129.9, 131.3, 133.9, 136.5, 138.0, 139.4, 139.5. HRMS (ESI-TOF) calcd for C₂₂H₂₂NO₄S₂, [M+H]⁺ 428.0985 Found 428.0977.

(E)-N-(2-(naphthalen-2-yl)vinyl)-N-(phenylsufonyl)benzenesulfonamide (3s)

Purified by flash column chromatography (eluent: petroleum ether / EtOAc = 25:1); white solid (37.7 mg, 42%); mp: 128–129°C; ¹H NMR (500 MHz, CDCl₃): δ = 6.65 (d, *J* = 13.5 Hz, 1H), 6.85 (d, *J* = 14.0 Hz, 1H), 7.49 – 7.59 (m, 7H), 7.67 (t, *J* = 7.5 Hz, 2H), 7.74 (s, 1H), 7.81-7.83 (m, 3H), 8.02 (d, *J* = 7.0 Hz, 4H)¹³C NMR (125 MHz; CDCl₃): δ = 119.5, 123.3, 126.7, 126.9, 127.7, 128.2, 128.6, 129.1, 131.1, 133.2, 133.6, 134.0, 139.1, 139.5. HRMS (ESI-TOF) calcd for C₂₄H₁₉NNaO₄S₂, [M+Na]⁺ 472.0653 Found 472.1061.

(E)-3-(4-methoxyphenyl)acrylaldehyde

Purified by flash column chromatography (eluent: petroleum ether / EtOAc = 25:1); Yellow liquid (7.8 mg, 24%); ¹H NMR (500 MHz, CDCl₃): δ = 3.79 (s, 3H), 6.89 - 6.91 (m, 1H), 7.00 - 7.05 (m, 2H), 7.09 - 7.17 (m, 2H), 7.31 (t, *J* = 8.5 Hz, 1H), 9.54 (s, 1H). ¹³C NMR (150 MHz;

CDCl₃): δ = 55.0, 114.8, 115.2, 122.3, 129.4, 136.2, 149.4, 159.4, 195.1HRMS (ESI-TOF) calcd for C₁₀H₁₀NaO₂, [M+Na]⁺ 185.0578 Found 185.0542.

References:

- (1) (a) C. Conard, M. Dolliver. Org. Synth. Coll, 1943, 2, 167-168.
- (2) L. A. Hull, J. Chem. Ed, 2001,78 (2), 2264.
- (3) R. V. Smerbeck, E. P. Pittz, (1986). U.S. Patent No. 4,587,260. Washington, DC: U.S. Patent and Trademark Office.2.
- (4) Ajani O O, Ituen R I, Falomo A. Pak. J. Sci. Ind. Res, Series A: Physical Sciences, 2011, 54(2), 59-67.

VIII. ¹H and ¹³C Spectra of New Compound

Compound 2a

7 989 7 972 7 616 7 616 7 616 7 616 7 594 7 139 7 139 7 139 7 139

Compound 2c

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1657	2 .152		060.0
---------------------------------------	------	--------	--	-------

Compound 2d

~2.46 ~2.41

N(SO₂Ph)₂

Compound 2e

8 019 8 004 8 004 7 3914 7 346 7 2543 7 2554 7 25554 7 255557 7 255557 7 25557 7 25557 7 25557 7 255577 7 255577 7 000 0----

S23

Compound 2f

	000 0
--	-------

Compound 2g

7 385 5 5 35 7 385 7 388 7 388 7 388 7 302 7 302 6 966 6 966

000 0----

7 993 975 975 951 951 951 7 549 7 549 1 549 998 6 332 6 332 6 338

---1 574

000 0----

S27

000 0---

Compound 2n

S30

100.0---

S31

Compound 3b

---2 360

Compound 3c

Compound 3d

C 8 001 5 8 8 1 5 8 1 5 8

Compound 3f

C 800 C

Compound 3g

000 0----

Compound 3r

The byproduct: (*E*)-3-(4-methoxyphenyl)acrylaldehyde

