## NHC-Catalyzed Enantioselective Synthesis of Dihydropyran-4-Carbonitriles bearing All-Carbon Quaternary Centers

Qiuju Wu,<sup>†</sup> Chengcheng Li,<sup>†</sup> Weihong Wang, Hongling Wang, Dingwu Pan, Pengcheng Zheng\*

Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of

Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University,

Huaxi District, Guiyang 550025, China.

| E-mail: zhen | gpc1986@163.com |
|--------------|-----------------|
|              |                 |

| Ι   | General Information                                                            | S1  |
|-----|--------------------------------------------------------------------------------|-----|
| II  | a) Condition optimization                                                      | S2  |
|     | b) General procedure for the catalytic reactions of aldehydes (1) with         |     |
|     | 1,3-dicarbony compounds (2) to synthesize product 3                            | S3  |
|     | c) Stereochemistry determination <b>3a</b> via X-ray crystallographic analysis | S3  |
|     | d) Proposed reaction mechanism for chirality control                           | S4  |
|     | e) Synthetic transformations of catalytic reaction product <b>3a</b>           | S4  |
| III | a) Preparations and characterizations of substrates                            | S5  |
|     | b) Characterizations of products                                               | S10 |
|     | c) References                                                                  | S20 |
| IV  | <sup>1</sup> H, <sup>13</sup> C NMR and HPLC data                              | S21 |

#### I General Information

Commercially available materials purchased from Innochem and J&K were used as received. THF was distilled from Na and used directly. Unless otherwise specified, all reactions were carried out under an atmosphere of argon in 10 mL Schlenk tube. NMR spectra were measured either on a Bruker ASCEND 400 (400 MHz) or on a JEOL-ECX-500 (500 MHz) spectrometer. The chemical shift  $\delta$  values were corrected to 7.26 ppm (<sup>1</sup>H NMR) and 77.16 ppm (<sup>13</sup>C NMR) for CHCl<sub>3</sub>. <sup>1</sup>H NMR splitting patterns are designated as singlet (s), double (d), triplet (t), quartet (q), dd (doublet of doublets), m (multiplets), and etc. All first-order splitting patterns were assigned on the base of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). High resolution mass spectrometer analysis (HRMS) was performed on Thermo Fisher Q Exactive mass spectrometer. HPLC analyses were measured on Waters systems with Empower3 system controller, Alliance column heater, and 2998 Diode Array Waters 2489 UV/Vis detector. Chiralcel brand chiral columns from Daicel Chemical Industries were used with models AD-H, or IB in 4.6 x 250 mm size. Absolute configuration of the products was determined by X-ray crystallography. The racemic products used to determine the er values were synthesized using racemic catalyst. Optical rotations were measured on a Insmark IP-digi Polarimeter in a 1 dm cuvette at 20°C. The concentration (c) is given in g/100 mL. Analytical thin-layer chromatography (TLC) was carried out on pre-coated silica gel plate (0.2 mm thickness). Melting Point (MP): Melting points were measured on a Beijing Tech XT-4 micro melting point apparatus and are uncorrected. Visualization was performed with short wave UV light.

# II General procedure

## a) Condition optimization

## Table S1. Screening of NHCs and bases for the reaction of 1a and 2a.

| CN O<br>H           | +<br>2a                                                                                                                                     | OEt so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ase(0.2 eq.)<br>4 (1.5 eq.)<br>4Å MS<br>Ivent, 25 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | O<br>NC Ph<br>3a                                     |                                                                                        |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------|
| /=<br>Mes∽N∖∽<br>SA | =∖ e<br>∽N~Mes                                                                                                                              | O<br>N<br>SB:<br>SC:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N BF4<br>N Ar<br>Ar=Ph<br>Ar=Mes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N<br>N<br>N<br>N<br>Mes<br>SD                        | Bn N N BF4<br>Mes<br>SE                                                                |
| entry               | catalyst                                                                                                                                    | base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | additive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | yield <b>3a</b> (%) <sup>[b]</sup>                   | er <b>3a</b> <sup>[c]</sup>                                                            |
| 1                   | SA                                                                                                                                          | Cs <sub>2</sub> CO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36                                                   | -                                                                                      |
| 2                   | SB                                                                                                                                          | Cs <sub>2</sub> CO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                                   | -                                                                                      |
| 3                   | SC                                                                                                                                          | Cs <sub>2</sub> CO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31                                                   | -                                                                                      |
| 4                   | SD                                                                                                                                          | Cs <sub>2</sub> CO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52                                                   | 80:20                                                                                  |
| 5                   | SE                                                                                                                                          | Cs <sub>2</sub> CO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 61                                                   | 86:14                                                                                  |
| 6                   | SD                                                                                                                                          | Cs <sub>2</sub> CO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LiCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 82                                                   | 93:7                                                                                   |
| $7^{d}$             | SD                                                                                                                                          | Cs <sub>2</sub> CO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sc(OTf) <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <5%                                                  | -                                                                                      |
| 8                   | SD                                                                                                                                          | Cs <sub>2</sub> CO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mg(OTf) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42                                                   | 85:15                                                                                  |
| 9                   | SE                                                                                                                                          | Cs <sub>2</sub> CO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LiCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85                                                   | 90:10                                                                                  |
| 10                  | SD                                                                                                                                          | K <sub>2</sub> CO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LiCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80                                                   | 92:8                                                                                   |
| 11                  | SD                                                                                                                                          | KOAc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LiCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74                                                   | 94:6                                                                                   |
| 12                  | SD                                                                                                                                          | DIEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LiCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42                                                   | 94:6                                                                                   |
| 13                  | SD                                                                                                                                          | Et <sub>3</sub> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LiCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 51                                                   | 89:11                                                                                  |
| 14                  | SD                                                                                                                                          | DABCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LiCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39                                                   | 92:8                                                                                   |
| 15                  | SD                                                                                                                                          | DMAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LiCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 89                                                   | 94:6                                                                                   |
| 16                  | SD                                                                                                                                          | DBU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LiCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55                                                   | 93:7                                                                                   |
|                     | CN O H<br>1a<br>1a<br>Mes N SA<br>entry<br>1<br>2<br>3<br>4<br>5<br>6<br>7 <sup>d</sup><br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16 | CNOOO1a2a $1a$ $2a$ $Mes$ $N$ $Mes$ $N$ $Mes$ $SA$ $a$ $SA$ $a$ $SA$ $a$ $SA$ $a$ $SA$ $a$ $SA$ $a$ $SD$ $a$ </th <th><math>CN</math><math>O</math><math>A</math><math>A</math><math>Ia</math><math>Za</math><math>Cl^{P}</math><math>Cl^{P}</math><math>Cl^{P}</math><math>Mes</math><math>Cl^{P}</math><math>Cl^{P}</math><math>Cl^{P}</math><math>Mes</math><math>Cl^{P}</math><math>Cl^{P}</math><math>Cl^{P}</math><math>Mes</math><math>Cl^{P}</math><math>Cl^{P}</math><math>Cl^{P}</math><math>Mes</math><math>Cl^{P}</math><math>Cl^{P}</math><math>Cl^{P}</math><math>Mes</math><math>Cl^{P}</math><math>Cl^{P}</math><math>Cl^{P}</math><math>Mes</math><math>Cl^{P}</math><math>Cl^{P}</math><math>Cl^{P}</math><math>Mes</math><math>Cl^{P}</math><math>Cl^{P}</math><math>Cl^{P}</math><math>Mes</math><math>Cl^{P}</math><math>Cl^{P}</math><math>Cl^{P}</math><math>Mes</math><math>Cl^{P}</math><math>Cl^{P}</math><math>Cl^{P}</math><math>Mes</math><math>Cl^{P}</math><math>Cl^{P}</math><math>Cl^{P}</math><math>I</math><math>SA</math><math>Cs_2CO_3</math><math>Cs_2CO_3</math><math>I</math><math>SD</math><math>Cs_2CO_3</math><math>Cs_2CO_3</math><math>I</math><math>SD</math><math>Cs_2CO_3</math><math>Cs_2CO_3</math><math>I</math><math>SD</math><math>Cs_2CO_3</math><math>I</math><math>SD</math><math>Cs_2CO_3</math><math>I</math><math>SD</math><math>Cs_2CO_3</math><math>I</math><math>SD</math><math>Cs_2CO_3</math><math>I</math><math>SD</math><math>Cs_2CO_3</math><math>I</math><math>SD</math><math>Cs_2CO_3</math><math>I</math><math>SD</math><math>Clar<math>I</math><math>SD</math><math>Clar<math>I</math><math>SD</math><math>Clar<math>I</math><math>SD</math><math>DABCO</math><math>I</math><math>SD</math><math>DMAP</math><math>I</math><math>SD</math><math>DMAP</math></math></math></math></th> <th><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></th> <th><math display="block">\begin{array}{c c c c c c c c } \begin{array}{c c c c c c c c c c c c c c c c c c c </math></th> | $CN$ $O$ $A$ $A$ $Ia$ $Za$ $Cl^{P}$ $Cl^{P}$ $Cl^{P}$ $Mes$ $Cl^{P}$ $Cl^{P}$ $Cl^{P}$ $I$ $SA$ $Cs_2CO_3$ $Cs_2CO_3$ $I$ $SD$ $Cs_2CO_3$ $Cs_2CO_3$ $I$ $SD$ $Cs_2CO_3$ $Cs_2CO_3$ $I$ $SD$ $ClarISDClarISDClarISDDABCOISDDMAPISDDMAP$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c c c c c c c c } \begin{array}{c c c c c c c c c c c c c c c c c c c $ |

S2

| 17                | SD | -    | LiCl | 81 | 93:7  |
|-------------------|----|------|------|----|-------|
| 18 <sup>e</sup>   | SD | DMAP | LiCl | 25 | 88:12 |
| 19 <sup>f</sup>   | SD | DMAP | LiCl | 56 | 91:9  |
| $20^{\mathrm{g}}$ | SD | DMAP | LiCl | 90 | 97:3  |

<sup>[a]</sup> 1.5 Equiv. 1a, 1 equiv. 2a (0.1 mmol), 20 mol% NHC, 20 mol% base, 1 eq of additive, 1.5 eq of 4, 2 mL THF, RT, 18 h. <sup>[b]</sup>
Yields were isolated yields after column chromatography. <sup>[c]</sup> e.r. was determined via HPLC using a chiral stationary phase. <sup>[d]</sup> 0.2
0.2 Equiv. of additive was used. <sup>[e]</sup> With DCM instead of THF. <sup>[f]</sup> With 1,4 dioxane instead of THF. <sup>[g]</sup> The reactions were performed at 0 °C.

# b) General procedure for the catalytic reactions of aldehydes (1) with 1,3-dicarbony compounds (2) to synthesize product 3:



To a dry Schlenk tube equipped with a magnetic stir bar, was added aldehydes 1 (0.15 mmol), 1,3-dicarbonyl compounds 2 (0.10 mmol), triazolium salt **SD** (0.02 mmol), and DMAP (0.02 mmol). The tube was closed with a septum, evacuated, and refilled with nitrogen. Freshly distilled THF (2 mL) was added and the reaction mixture was then stirred at 0  $^{\circ}$ C till 2 was completely consumed (monitored by TLC). The mixture was concentrated under reduced pressure. The resulting crude residue was purified *via* column chromatography on silica gel (6:1 petroleum ether/EtOAc) to afford the desired product 3, which was confirmed by <sup>1</sup>H NMR, <sup>13</sup>C NMR spectrum, and enantio ratio was determined by chiral HPLC.

Note: NHC **F** was prepared according to literature procedure.<sup>[1]</sup>

#### c) Stereochemistry determination 3a via X-ray crystallographic analysis

Product 3a was crystallized as a colorless crystal via vaporization of a petrollium

ether/ethyl acetate solution, and its absolute configuration was determined by x-ray structure analysis. CCDC 1559727 contains the supplementary crystallographic data that can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data request/cif.



#### d) Proposed reaction mechanism for chirality control.



The formation of the acylazolium intermediate has been well demonstrated in literatures.<sup>[2]</sup> LiCl has good affinities for carbonyl oxygens and carboxylates. It is likely involved in multisite coordination to activate the  $\beta$ -ketoester electrophile through formation of a cyclic enolate intermediate and bring the electrophile to close proximity with the acylium intermediate. After enantioselective Re face attack and intramolecular lacton formation, the desired product could be afforded and the catalyst was released for another catalytic cycle.

#### e) Synthetic transformations of catalytic reaction products 3a



To a solution of **1a** (28.6 mg, 0.1 mmol) in  $CH_2Cl_2$  (1.5 mL) was added *m*-CPBA (55%, 221.0 mg, 0.7 mmol). After 48 h of stirring at 70 °C, the solution was cooled down to room temperature. A known quantity (12.8 mg) of 1,3,5-trimethoxybenzene was added as an internal standard, and a part of the mixture was analyzed by <sup>1</sup>H NMR spectroscopy in CDCl<sub>3</sub>.

### III. Characterizations of substrates and products, reference

#### a) Preparations and characterizations of substrates



To a stirred suspension of substituted phenyl acetonitrile **S1** (20 mmol, 1.0 eq) and glyoxal dimethyl acetal **S2** (2.51 g, 3.62 mL, 24.0 mmol, 1.20 eq, 60% aq. soln) in MeOH (50 mL),  $K_2CO_3(4.15 \text{ g}, 30.0 \text{ mmol}, 1.50 \text{ eq})$  was added at rt. The mixture was heated to reflux for 2 h. Cooling to rt and poured water (70 mL) into the mixture. The mixture was extracted with EA (3× 60 mL), the combined organic layers were washed with brine and dried over Na<sub>2</sub>SO<sub>4</sub>. The residual solvents were removed under reduced pressure to afford the product (Z)-4,4-dimethoxy-2-phenylbut-2-enenitrile as colorless liquid without further purification.

To a stirred suspension of (Z)-4,4-dimethoxy-2-phenylbut-2-enenitrile in THF (50 mL) was added 1N HCl (50 mL). The mixture was stirred at rt for 1h until material completion as judged by TLC. The mixture was extracted with EA ( $3 \times 50$  mL). The organic layers were washed with brine and treated with anhydrous Na<sub>2</sub>SO<sub>4</sub>. The

solvent was evaporated and the product (Z)-4-oxo-2-phenylbut-2-enenitrile were purified by flash chromatography (Petroleum ether /EtOAc, 20:1) to afford the substrate as solid.

#### (Z)-4-oxo-2-phenylbut-2-enenitrile (1a)



Light yellow solid, yield: 1.41 g (45%). <sup>1</sup>H NMR (400 MHz, CDCl3):  $\delta$ =10.25 (d, J = 7.6 Hz, 1H), 7.79 – 7.76 (m, 2H), 7.60 – 7.50 (m, 3H), 7.06 (d, J = 7.6 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl3):  $\delta$ =190.11, 135.99, 132.77, 131.60, 130.69, 129.64, 127.11, 114.09.

#### (Z)-2-(4-fluorophenyl)-4-oxobut-2-enenitrile (1b)



Yellow solid, yield:1.56 g (44%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ =10.23 (d, *J* = 7.6 Hz, 1H), 7.79 (dd, *J* = 9.0, 5.0 Hz, 2H), 7.26 – 7.20 (m, 2H), 7.00 (d, *J* = 7.6 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ =189.93, 165.31 (d, *J* = 256.3 Hz), 135.71 (d, *J* = 2.4 Hz), 130.37, 126.91 (d, *J* = 3.4 Hz), 117.17, 116.94, 113.96.

#### (Z)-2-(4-bromophenyl)-4-oxobut-2-enenitrile (1c)



Yellow solid, yield:2.23 g (47%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$ =10.24 (d, J = 7.5 Hz, 1H), 7.65 (dd, J = 21.3, 8.2 Hz, 4H), 7.05 (d, J = 7.5 Hz, 1H); <sup>13</sup>C NMR (125

MHz, CDCl<sub>3</sub>): δ=189.93, 136.19, 133.05, 130.50, 129.66, 128.49, 127.81, 113.82.

#### (Z)-4-oxo-2-(p-tolyl)but-2-enenitrile (1d)



Yellow solid, yield: 1.80 g (52%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ =10.22 (d, *J* = 7.7 Hz, 1H), 7.66 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 7.02 (d, *J* = 7.7 Hz, 1H), 2.44 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ =190.27, 143.92, 134.86, 131.62, 130.37, 127.95, 127.10, 114.21, 21.64.

#### (Z)-2-(4-(tert-butyl)phenyl)-4-oxobut-2-enenitrile (1e)



Brown solid, 2.5 g (48%). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>): δ=10.24 (d, *J* = 7.7 Hz, 1H), 7.71 (d, *J* = 8.8 Hz, 2H), 7.54 (d, *J* = 8.7 Hz, 2H), 7.04 (d, *J* = 7.7 Hz, 1H), 1.36 (s, 9H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>): δ=190.31, 156.96, 134.97, 131.57, 127.89, 127.03, 126.68, 114.20, 35.23, 31.03.

#### (Z)-2-(4-methoxyphenyl)-4-oxobut-2-enenitrile (1f)



Yellow solid, yield: 3.15 g (84%). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>): δ=10.20 (d, *J* = 7.9 Hz, 1H), 7.77 – 7.69 (m, 2H), 7.06 – 6.97 (m, 2H), 6.94 (d, *J* = 7.8 Hz, 1H), 3.90 (s, 3H); <sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>): δ=190.33, 163.49, 133.45, 131.28, 129.13, 123.21, 115.17, 114.35, 55.78.

(Z)-2-(3-fluorophenyl)-4-oxobut-2-enenitrile (1g)



Yellow solid, 0.82 g (23%). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta$ =10.25 (d, J = 7.5 Hz, 1H), 7.60 – 7.57 (m, 1H), 7.53 (td, J = 8.0, 5.6 Hz, 1H), 7.48 – 7.43 (m, 1H), 7.29 (dd, J = 8.1, 2.5 Hz, 1H), 7.05 (d, J = 7.5 Hz, 1H); <sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>):  $\delta$ =189.87, 164.16, 162.17, 136.96, 132.78, 131.49, 130.34, 123.07, 119.89, 113.97.

#### (Z)-2-(3-chlorophenyl)-4-oxobut-2-enenitrile (1h)



Brown solid, 1.10 g (28%). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>): δ=10.25 (d, *J* = 7.5 Hz, 1H), 7.74 (t, *J* = 1.8 Hz, 1H), 7.66 (ddd, *J* = 7.7, 1.8, 1.1 Hz, 1H), 7.55 (ddd, *J* = 8.0, 1.9, 1.1 Hz, 1H), 7.48 (t, *J* = 7.9 Hz, 1H), 7.05 (d, *J* = 7.5 Hz, 1H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>): δ=189.67, 136.95, 135.94, 132.65, 132.41, 130.87, 130.05, 127.00, 125.25, 113.69.

#### (Z)-2-(3-methoxyphenyl)-4-oxobut-2-enenitrile (1i)



Yellow solid, yield:0.50 g (13%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$ =10.25 (d, J = 6.3 Hz, 1H), 7.47 – 7.34 (m, 2H), 7.26 – 7.23 (m, 1H), 7.11 (d, J = 8.2 Hz, 1H), 7.04 (d, J = 6.1 Hz, 1H), 3.88 (s, 3H); <sup>13</sup>C NMR (125 MHz,CDCl<sub>3</sub>):  $\delta$ =190.26, 160.38, 136.23, 132.02, 131.59, 130.78, 119.66, 118.66, 114.19, 112.24, 55.65.

(Z)-2-(naphthalen-2-yl)-4-oxobut-2-enenitrile (1j)



The title compound was prepared according to the general procedure on 10 mmol scale. Yellow solid, yield: 1.15 g( 55%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ =10.29 (d, *J* = 7.6 Hz, 1H), 8.33 (s, 1H), 8.00 – 7.86 (m, 3H), 7.70 (dd, *J* = 8.7, 1.8 Hz, 1H), 7.62 (m, 2H), 7.14 (d, *J* = 7.6 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ =190.15, 135.65, 135.03, 132.91, 131.52, 129.71, 129.57, 129.33, 129.00, 127.95, 127.72, 121.70, 114.19.

#### (Z)-2-(2-fluorophenyl)-4-oxobut-2-enenitrile (1k)



Light yellow solid, 0.56 g (16%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$ =10.28 (dd, J = 7.6, 0.8 Hz, 1H), 7.78 (t, J = 7.8 Hz, 1H), 7.57 – 7.52 (m, 1H), 7.34 (t, J = 7.7 Hz, 1H), 7.26 – 7.21 (m, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$ =190.52, 160.72 (d, J = 257.0 Hz), 140.57 (d, J = 13.4 Hz), 134.00 (d, J = 9.4 Hz), 130.48, 126.40, 125.31 (d, J = 3.6 Hz), 119.24 (d, J = 9.8 Hz), 117.24 (d, J = 22.1 Hz), 113.71.

#### (Z)-2-(2-methoxyphenyl)-4-oxobut-2-enenitrile (11)



Yellow solid, yield: 1.05 g (28%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ =10.27 (d, J = 7.9 Hz, 1H), 7.69 (dd, J = 7.8, 1.6 Hz, 1H), 7.50 (ddd, J = 8.9, 7.5, 1.6 Hz, 1H), 7.38 (d, J = 7.9 Hz, 1H), 7.09 (td, J = 7.7, 1.0 Hz, 1H), 7.03 (d, J = 8.4 Hz, 1H), 3.95 (s, 3H);

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ=191.66, 158.39, 139.84, 133.54, 130.79, 129.12, 121.33, 120.05, 114.50, 111.95, 55.82.

#### (E)-4-oxo-2-(thiophen-2-yl)but-2-enenitrile (1m)



Brown solid, yield: 1.35 g (38%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ =10.14 (d, J = 7.6 Hz, 1H), 7.71 (dd, J = 3.8, 0.9 Hz, 1H), 7.62 (dd, J = 5.1, 1.0 Hz, 1H), 7.20 (dd, J = 5.1, 3.8 Hz, 1H), 6.81 (d, J = 7.6 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ =189.38, 136.19, 132.85 (d, J = 3.8 Hz), 132.22, 129.22, 125.08, 113.20.

#### b) Characterizations of products

(*R*)-ethyl-4-cyano-6-methyl-2-oxo-4-phenyl-3,4-dihydro-2H-pyran-5-carboxylate (3a)



White solid, yield: 25.8 mg (90%); mp: 90-91 °C;  $[\alpha]_D^{20}=26.5$  (c 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$ =7.44 – 7.35 (m, 5H), 4.08 – 3.98 (m, 2H), 3.31 (d, J = 15.9 Hz, 1H), 3.09 (d, J = 15.9 Hz, 1H), 2.48 (s, 3H), 0.96 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$ =163.99, 162.22, 161.35, 137.02, 129.58, 128.98, 124.82, 119.03, 107.81, 61.51, 43.00, 42.79, 18.86, 13.48; HRMS (ESI) calcd for C<sub>16</sub>H<sub>16</sub>NO<sub>4</sub>(M+H)<sup>+</sup>: 286.1073, Found: 286.1070; 97:3 *er* as determined by HPLC (Daicel Chralcel IB, 90:10 hexanes/*i*-PrOH, 1 mL/min),  $\lambda$ =254nm, t<sub>r</sub> (minor) = 16.98 min, t<sub>r</sub> (major) = 22.76min. (*R*)-ethyl-4-cyano-4-(4-fluorophenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-5-ca rboxylate (3b)



White solid, yield: 26.4 mg (87%); mp: 85-86 °C;  $[\alpha]_D^{20}$ =38.3 (c 0.5, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$ =7.39 (dd, J = 8.8, 4.8 Hz, 2H), 7.11 (t, J = 8.5 Hz, 2H), 4.24 – 3.88 (m, 2H), 3.32 (d, J = 15.8 Hz, 1H), 3.08 (d, J = 15.9 Hz, 1H), 2.48 (s, 3H), 1.03 (t, J = 7.1 Hz, 3H).; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$ =163.83, 163.73, 162.36, 161.15, 132.71, 126.88 (d, J = 8.4 Hz), 118.94, 116.62 (d, J = 22.3 Hz), 107.58, 61.65, 42.77, 42.49, 18.93, 13.60; HRMS (ESI) calcd for C<sub>16</sub>H<sub>15</sub>FNO<sub>4</sub> (M+H)<sup>+</sup>: 304.0979, Found: 304.0978; 96:4 *er* as determined by HPLC (Daicel Chralcel IB, 90:10 hexanes/ *i*-PrOH, 1 mL/min),  $\lambda$ =254nm, t<sub>r</sub> (minor) = 15.25 min, t<sub>r</sub> (major) = 20.59min.

(*R*)-ethyl-4-(4-bromophenyl)-4-cyano-6-methyl-2-oxo-3,4-dihydro-2H-pyran-5-ca rboxylate (3c)



Yellow solid, yield: 23.1 mg (63%); mp: 51-52 °C;  $[\alpha]_D^{20} = 46.7$  (c 0.5, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.55$  (d, J = 8.8 Hz, 2H), 7.28 (d, J = 8.8 Hz, 2H), 4.28 – 3.76 (m, 2H), 3.31 (d, J = 15.9 Hz, 1H), 3.06 (d, J = 15.9 Hz, 1H), 2.48 (s, 3H), 1.04 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta = 163.83$ , 162.72, 161.10, 136.19, 132.85, 126.72, 123.29, 118.77, 107.36, 61.81, 42.81, 42.57, 19.06, 13.71; **HRMS** (ESI) calcd for  $C_{16}H_{15}BrNO_4$  (M+H)<sup>+</sup>: 364.0184, Found: 364.0181; 96:4 *er* as determined by HPLC (Daicel Chralcel IB, 80:20 hexanes/ *i*-PrOH, 1 mL/min),  $\lambda$ =254nm, t<sub>r</sub> (minor) = 12.40 min, t<sub>r</sub> (major) = 26.82 min.

(R)-ethyl-4-cyano-6-methyl-2-oxo-4-(p-tolyl)-3,4-dihydro-2H-pyran-5-carboxylat

e (3d)



White solid, yield: 23.3 mg (78%); mp: 84-85°C;  $[\alpha]_D^{20} = 28.5$  (c 1.0, CHCl<sub>3</sub>); <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta$ =7.27 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.5 Hz, 2H), 4.32 – 3.78 (m, 2H), 3.29 (d, J = 15.8 Hz, 1H), 3.07 (d, J = 15.9 Hz, 1H), 2.47 (s, 3H), 2.35 (s, 3H), 1.00 (t, J = 7.1 Hz, 3H); <sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>):  $\delta$ =164.07, 161.95, 161.54, 138.98, 133.85, 130.17, 124.73, 119.21, 107.92, 61.52, 42.84, 42.68, 21.01, 18.85, 13.55; **HRMS** (ESI) calcd for C<sub>17</sub>H<sub>18</sub>NO<sub>4</sub> (M+H)<sup>+</sup>: 300.1230, Found: 300.1232; 97:3 *er* as determined by HPLC (Daicel Chralcel IB, 80:20 hexanes/ *i*-PrOH, 1 mL/min),  $\lambda$ =254nm, t<sub>r</sub> (minor) = 10.33 min, t<sub>r</sub> (major) = 24.09min.

(*R*)-ethyl-4-(4-(tert-butyl)phenyl)-4-cyano-6-methyl-2-oxo-3,4-dihydro-2H-pyran -5-carboxylate (3e)



White solid, yield: 34.1 mg (88%); mp: 104-105 °C;  $[\alpha]_D^{20} = 32.4$  (c 1.0, CHCl<sub>3</sub>); <sup>1</sup>H s12

**NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta$ =7.41 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 4.14 – 3.94 (m, 2H), 3.30 (d, J = 15.9 Hz, 1H), 3.10 (d, J = 15.9 Hz, 1H), 2.46 (s, 3H), 1.30 (s, 9H), 0.94 (t, J = 7.1 Hz, 3H); <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>):  $\delta$ =164.10, 161.88, 161.61, 152.16, 133.74, 126.45, 124.58, 119.17, 108.07, 61.43, 42.72, 42.56, 34.61, 31.17, 18.85, 13.43; **HRMS** (ESI) calcd for C<sub>20</sub>H<sub>24</sub>NO<sub>4</sub> (M+H)<sup>+</sup>: 342.1699, Found: 342.1698; 99:1 *er* as determined by HPLC (Daicel Chralcel IB, 90:10 hexanes/ *i*-PrOH, 1 mL/min),  $\lambda$ =254 nm, t<sub>r</sub> (minor) = 8.65 min, t<sub>r</sub> (major) = 12.81 min.

(*R*)-ethyl-4-cyano-4-(4-methoxyphenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-5carboxylate (3f)



White solid, yield: 25.2 mg (80%); mp: 40-41 °C;  $[\alpha]_D^{20} = 29.5$  (c 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.30$  (d, J = 8.9 Hz, 2H), 6.92 (d, J = 8.9 Hz, 2H), 4.13 – 4.03 (m, 2H), 3.81 (s, 1H), 3.09 (d, J = 15.8 Hz, 1H), 2.46 (s, 3H), 1.04 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta = 164.20$ , 161.91, 161.70, 159.99, 128.60, 126.32, 119.40, 114.90, 108.10, 61.65, 55.51, 43.02, 42.44, 18.95, 13.73; HRMS (ESI) calcd for C<sub>17</sub>H<sub>18</sub>NO<sub>5</sub> (M+H)<sup>+</sup>: 316.1179, Found: 316.1173; 95:5 *er* as determined by HPLC (Daicel Chralcel IB, 70:30 hexanes/ *i*-PrOH, 0.8 mL/min),  $\lambda = 254$ nm, t<sub>r</sub> (minor) = 11.22 min, t<sub>r</sub> (major) = 25.33 min.

(*R*)-ethyl-4-cyano-4-(3-fluorophenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-5-ca rboxylate (3g)



White solid, yield: 19.4 mg (60%); mp: 60-61 °C;  $[\alpha]_D^{20} = 42.8$  (c 1.0, CHCl<sub>3</sub>); <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.41$  (dd, J = 13.9, 8.0 Hz, 1H), 7.22 – 7.17 (m, 1H), 7.15 – 7.05 (m, 2H), 4.14 – 4.04 (m, 2H), 3.33 (d, J = 15.9 Hz, 1H), 3.08 (d, J = 15.9Hz, 1H), 2.49 (s, 3H), 1.02 (t, J = 7.1 Hz, 3H); <sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>):  $\delta = 163.72$ , 163.12 (d, J = 249.1 Hz), 162.74, 139.49 (d, J = 7.1 Hz), 131.40 (d, J = 8.4Hz), 120.57, 118.66, 116.16 (d, J = 21.1 Hz), 112.51 (d, J = 24.0 Hz), 107.21, 61.66, 42.79, 42.47, 18.96, 13.56; **HRMS** (ESI) calcd for C<sub>16</sub>H<sub>15</sub>FNO<sub>4</sub> (M+H)<sup>+</sup>: 304.0979, Found: 304.0988; >99:1 *er* as determined by HPLC (Daicel Chralcel AD-H, 95:5 hexanes/ *i*-PrOH, 1 mL/min),  $\lambda = 254$ nm, t<sub>r</sub> (minor) = 13.65 min, t<sub>r</sub> (major) = 15.31min.

(*R*)-ethyl-4-(3-chlorophenyl)-4-cyano-6-methyl-2-oxo-3,4-dihydro-2H-pyran-5-ca rboxylate (3h)



White solid, yield: 25.2 mg (79%); mp: 47-48 °C;  $[\alpha]_D^{20} = 20.5$  (c 0.5, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.42 - 7.35$  (m, 3H), 7.31 - 7.27 (m, 1H), 4.27 - 3.55 (m, 2H), 3.33 (d, J = 16.0 Hz, 1H), 3.08 (d, J = 15.8 Hz, 1H), 2.50 (s, 3H), 1.02 (t, J = 7.1Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta = 163.67$ , 162.80, 160.95, 139.01, 135.62, 130.90, 129.34, 125.30, 123.02, 118.57, 107.13, 61.68, 42.73, 42.44, 18.98, 13.56; HRMS (ESI) calcd for C<sub>16</sub>H<sub>15</sub>ClNO<sub>4</sub> (M+H)<sup>+</sup>: 337.0949, Found: 337.0946; 95:5 *er* as determined by HPLC (Daicel Chralcel AD-H, 90:10 hexanes/ *i*-PrOH, 0.8 mL/min),  $\lambda$ =254nm, t<sub>r</sub> (minor) = 11.46 min, t<sub>r</sub> (major) = 13.81min.

(*R*)-ethyl-4-cyano-4-(3-methoxyphenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-5carboxylate (3i)



White solid, yield: 18.7 mg (59%); mp: 57-58 °C;  $[\alpha]_D^{20}=28.3$  (c 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta=7.33$  (t, J = 7.9 Hz, 1H), 6.99 – 6.82 (m, 3H), 4.16 – 3.97 (m, 2H), 3.82 (s, 3H), 3.31 (d, J = 15.8 Hz, 1H), 3.09 (d, J = 15.8 Hz, 1H), 2.48 (s, 3H), 1.00 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta=164.00$ , 162.21, 161.39, 160.36, 138.48, 130.73, 119.02, 116.86, 113.94, 111.14, 107.70, 61.53, 55.43, 42.95, 42.6, 18.87,13.54; HRMS (ESI) calcd for C<sub>17</sub>H<sub>18</sub>NO<sub>5</sub> (M+H)<sup>+</sup>: 316.1179, Found: 316.1176; 91:9 *er* as determined by HPLC (Daicel Chralcel IB, 90:10 hexanes/*i*-PrOH, 0.8 mL/min),  $\lambda=254$ nm, t<sub>r</sub> (minor) = 21.85 min, t<sub>r</sub> (major) = 31.78 min.

(*R*)-ethyl-4-cyano-6-methyl-4-(naphthalen-2-yl)-2-oxo-3,4-dihydro-2H-pyran-5-c arboxylate (3j)



Yellow, yield: 27.5 mg (77%); mp: 77-78 °C;  $[\alpha]_D^{20} = 59.3$  (c 0.5, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.93 - 7.89$  (m, 2H), 7.88 - 7.84 (m, 2H), 7.61 - 7.50 (m, 2H), <sup>S15</sup>

7.42 (dd, J = 8.6, 2.1 Hz, 1H), 4.09 – 3.90 (m, 2H), 3.37 (d, J = 16.0 Hz, 1H), 3.19 (d, J = 16.0 Hz, 1H), 2.53 (s, 3H), 0.87 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta = 164.03$ , 162.37, 161.36, 134.01, 133.09, 132.99, 129.92, 128.18, 127.70, 127.18 (d, J = 6.9 Hz), 124.62, 121.61, 119.12, 107.72, 61.52, 43.12, 42.64, 18.95, 13.47; HRMS (ESI) calcd for C<sub>20</sub>H<sub>18</sub>NO<sub>4</sub> (M+H)<sup>+</sup>: 336.1230, Found: 336.1229; 97:3 *er* as determined by HPLC (Daicel Chralcel IB, 75:25 hexanes/ *i*-PrOH, 1 mL/min),  $\lambda = 254$ nm, t<sub>r</sub> (minor) = 17.30 min, t<sub>r</sub> (major) = 35.22min.

(S)-ethyl-4-cyano-4-(2-fluorophenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-5-car boxylate (3k)



White solid, yield: 14.3 mg (47%); mp: 71-72 °C;  $[\alpha]_D^{20} = 20.1$  (c 0.5, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$ =7.54 (t, J = 8.1 Hz, 1H), 7.44 – 7.35 (m, 1H), 7.22 (t, J = 7.7 Hz, 1H), 7.13 (dd, J = 11.9, 8.2 Hz, 1H), 4.09 (q, J = 7.1 Hz, 2H), 3.40 (d, J = 16.2 Hz, 1H), 3.29 (d, J = 16.1 Hz, 1H), 2.47 (s, 3H), 1.02 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$ =163.80, 161.85, 161.50, 159.45 (d, J = 248.6 Hz), 131.26 (d, J = 8.5 Hz), 128.69, 124.87 (d, J = 3.2 Hz), 123.33 (d, J = 9.9 Hz), 118.24, 117.09 (d, J = 21.6 Hz), 106.55, 61.50, 40.51, 39.45, 19.11, 13.59; HRMS (ESI) calcd for C<sub>16</sub>H<sub>15</sub>FNO<sub>4</sub> (M+H)<sup>+</sup>: 304.0979, Found: 304.0991; 95:5 *er* as determined by HPLC (Daicel Chralcel AD-H, 90:10 hexanes/ *i*-PrOH, 0.8 mL/min),  $\lambda$ =254nm, t<sub>r</sub> (minor) = 11.99 min, t<sub>r</sub> (major) = 13.78min.

(*R*)-ethyl-4-cyano-4-(2-methoxyphenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-5carboxylate (3l)



White solid, yield: 23.2 mg (74%); mp: 104-105 °C;  $[\alpha]_D^{20}$ =87.3 (c 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$ =7.60 (d, J = 7.8 Hz, 1H), 7.35 (t, J = 7.9 Hz, 1H), 7.01 (t, J = 7.7 Hz, 1H), 6.92 (d, J = 8.0 Hz, 1H), 4.13 – 4.04 (m, 2H), 3.79 (s, 3H), 3.44 (d, J= 16.3 Hz, 1H), 3.25 (d, J = 16.6 Hz, 1H), 2.44 (s, 3H), 1.08 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$ =164.36, 162.24, 161.10, 155.87, 130.50, 128.89, 124.00, 120.93, 119.89, 111.68, 105.85, 61.28, 54.84, 41.92, 38.87, 19.42, 13.71; HRMS (ESI) calcd for C<sub>17</sub>H<sub>18</sub>NO<sub>5</sub> (M+H)<sup>+</sup>: 316.1179, Found: 316.1183; 95:5 *er* as determined by HPLC (Daicel Chralcel AD-H, 90:10 hexanes/ *i*-PrOH, 0.8 mL/min),  $\lambda$ =254nm, t<sub>r</sub> (minor) = 12.08 min, t<sub>r</sub> (major) = 16.36min.

(*R*)-ethyl-4-cyano-6-methyl-2-oxo-4-(thiophen-2-yl)-3,4-dihydro-2H-pyran-5-car boxylate (3m)



Yellow solid, yield: 19.6 mg (67%); mp: 45-46 °C;  $[\alpha]_D^{20} = 30.7$  (c 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.30$  (d, J = 5.1 Hz, 1H), 7.16 – 7.12 (m, 1H), 7.02 – 6.96 (m, 1H), 4.30 – 4.13 (m, 2H), 3.39 (d, J = 15.9 Hz, 1H), 3.33 (d, J = 15.9 Hz, 1H), 2.45 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta = 163.75$ , 162.24, 161.33, 140.04, 127.59, 126.58, 126.12, 118.72, 108.43, 61.95, 43.07, 39.45, 19.16, 13.83; HRMS (ESI) calcd for C<sub>14</sub>H<sub>14</sub>SNO<sub>4</sub> (M+H)<sup>+</sup>: 292.0638, Found: 292.0608; 98:2 *er* as determined by HPLC (Daicel Chralcel AD-H, 90:10 hexanes/ *i*-PrOH, 0.8 mL/min),  $\lambda$ =254nm, t<sub>r</sub> (minor) = 19.58 min, t<sub>r</sub> (major) = 27.24min.

# (*R*)-ethyl-4-cyano-6-ethyl-2-oxo-4-phenyl-3,4-dihydro-2H-pyran-5-carboxylate (3n)



White solid, yield: 28.0 mg (93%); mp: 101-102 °C;  $[\alpha]_D^{20} = 36.1$  (c 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.45 - 7.35$  (m, 5H), 4.09 - 3.99 (m, 2H), 3.31 (d, J =15.9 Hz, 1H), 3.08 (d, J = 15.9 Hz, 1H), 2.90 - 2.75 (m, 2H), 1.31 (t, J = 7.5 Hz, 3H), 0.96 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta = 166.45$ , 163.89, 161.66, 136.89, 129.59, 128.98, 124.83, 119.09, 107.18, 61.52, 42.94, 42.76, 25.52, 13.46, 11.64; HRMS (ESI) calcd for C<sub>17</sub>H<sub>18</sub>NO<sub>4</sub> (M+H)<sup>+</sup>: 300.1230, Found: 300.1232; 96:4 *er* as determined by HPLC (Daicel Chralcel IB, 90:10 hexanes/ *i*-PrOH, 1 mL/min),  $\lambda = 254$ nm, t<sub>r</sub> (minor) = 10.73 min, t<sub>r</sub> (major) = 14.89min.

(*R*)-methyl-4-cyano-6-methyl-2-oxo-4-phenyl-3,4-dihydro-2H-pyran-5-carboxyla te (30)



White solid, yield: 21.6 mg (80%); mp: 78-79 °C;  $[\alpha]_D^{20} = 50.5$  (c 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.51 - 7.33$  (m, 5H), 3.58 (s, 3H), 3.33 (d, J = 15.8 Hz, 1H), 3.11 (d, J = 15.8 Hz, 1H), 2.49 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 164.56$ , 162.47, 161.36, 136.58, 129.68, 129.10, 124.81, 119.13, 107.66, 52.13, 43.00, 42.75, 19.00; HRMS (ESI) calcd for C<sub>15</sub>H<sub>14</sub>NO<sub>4</sub> (M+H)<sup>+</sup>: 272.0917, Found: 272.0918; 97:3 *er* as determined by HPLC (Daicel Chralcel IB, 90:10 hexanes/ *i*-PrOH, 1 mL/min),  $\lambda$ =254nm, t<sub>r</sub> (minor) = 15.45 min, t<sub>r</sub> (major) = 18.89min.

(*R*)-isopropyl-4-cyano-6-methyl-2-oxo-4-phenyl-3,4-dihydro-2H-pyran-5-carboxy late (3p)



White solid, yield: 24.9 mg (83%); mp: 91-92 °C;  $[\alpha]_D^{20} = 13.8$  (c 0.5, CHCl<sub>3</sub>); <sup>1</sup>H **NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.43 - 7.34$  (m, 5H), 4.87 (m, J = 12.5, 6.2 Hz, 1H), 3.30 (d, J = 16.0 Hz, 1H), 3.06 (d, J = 16.0 Hz, 1H), 2.47 (s, 3H), 1.17 (d, J = 6.3 Hz, 3H), 0.72 (d, J = 6.2 Hz, 3H); <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>):  $\delta = 163.45$ , 161.97, 161.42, 137.35, 129.54, 128.89, 124.84, 118.96, 107.98, 69.65, 42.95, 42.81, 21.41, 20.77, 18.76; **HRMS** (ESI) calcd for C<sub>17</sub>H<sub>18</sub>NO<sub>4</sub> (M+H)<sup>+</sup>:300.1230, Found: 300.1228; 93:7 *er* as determined by HPLC (Daicel Chralcel IB, 90:10 hexanes/ *i*-PrOH, 1 mL/min),  $\lambda = 254$ nm, t<sub>r</sub> (minor) = 14.21min, t<sub>r</sub> (major) = 21.08min.

(*R*)-tert-butyl-4-cyano-6-methyl-2-oxo-4-phenyl-3,4-dihydro-2H-pyran-5-carbox ylate (3q)



White solid, yield: 33.12 mg (87%); mp: 77-78 °C;  $[\alpha]_D^{20} = 28.6$  (c 0.5, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 7.50 - 7.30$  (m, 5H), 3.27 (d, J = 16.0 Hz, 1H), 3.03 (d, J = 16.0 Hz, 1H), 2.43 (s, 3H), 1.18 (s, 9H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta = 163.02$ , 161.56, 161.11, 137.45, 129.50, 128.87, 124.97, 118.99, 108.95, 83.21, 43.07, 42.83, 27.49, 18.45; **HRMS** (ESI) calcd for  $C_{18}H_{20}NO_4$  (M+H)<sup>+</sup>: 314.1386, Found: 314.1381; 98:2 *er* as determined by HPLC (Daicel Chralcel IB, 90:10 hexanes/ *i*-PrOH, 1 mL/min),  $\lambda$ =254nm, t<sub>r</sub> (minor) = 10.66 min, t<sub>r</sub> (major) = 16.58min.

(1R,5S,6S)-ethyl

5-cyano-1-methyl-3-oxo-5-phenyl-2,7-dioxabicyclo[4.1.0]heptane-6-carboxylate (5a)



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ=7.44 (dd, J = 13.5, 5.5 Hz, 5H), 4.33 – 4.00 (m, 2H),
3.37 (d, J = 16.0 Hz, 1H), 2.92 (d, J = 16.0 Hz, 1H), 2.00 (s, 3H), 1.09 (t, J = 7.1 Hz,
3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ=163.48, 162.87, 161.88, 161.19, 134.98, 133.49,
129.87, 129.51, 129.51, 125.55, 125.08, 117.74, 86.92, 63.32, 41.89, 17.08, 13.57.

#### c) References

[1] J. R. Struble, Y. Lian, J. W. Bode, Org. Synth. 2010, 87, 362.

[2] a) S. De Sarkar and A. Studer, *Angew. Chem. Int. Ed.* 2010, 49, 9266; b) A. Biswas,
S. D. Sarkar, R. Frohlich, A. Studer, *Org. Lett.* 2011, 13, 4080; c) Z.-Q. Rong, M.-Q.
Jia, S.-L. You, *Org. Lett.* 2011, 13, 4966; d) F.-G. Sun, L-H. Sun, S. Ye, *Adv. Synth. Catal.* 2011, 353, 3134; e) C. Yao, D. Wang, J. Lu, T. Li, W. Jiao, C. Yu, *Chem. Eur. J.*2012, 18, 1914; f) D. Xie, D. Shen, Q. Chen, J. Zhou, X. Zeng, G. Zhong, *J. Org. Chem.* 2016, 81, 6136; g) A. Axelsson, E. Hammarvid, L. Ta, H. Sunden, *Chem. Commun.* 2016, 52, 11571; h) X. Wu, Y. Zhang, Y. Wang, J. Ke, M. Jeret, R. N. Reddi,
S. Yang, B.-A. Song, Y. R. Chi, *Angew. Chem. Int. Ed.* 2017, 56, 2942.

# IV <sup>1</sup>H, <sup>13</sup>C NMR spectra





<sup>13</sup>C NMR spectrum of **1b** (100 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **1c** (125 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **1d** (100 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **1e** (100 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **1f** (125 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **1g** (125 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **1h** (100 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **1i** (125 MHz, CDCl<sub>3</sub>)



 $^{13}\text{C}$  NMR spectrum of 1j (100 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of 1k (125 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **11** (100 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **1m** (100 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **3a** (125 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **3b** (125 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **3c** (125 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **3d** (125 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **3e** (125 MHz, CDCl<sub>3</sub>)



<sup>1</sup>H NMR spectrum of **3f** (125 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **3g** (125 MHz, CDCl<sub>3</sub>)



<sup>1</sup>H NMR spectrum of **3h** (500 MHz, CDCl<sub>3</sub>)



 $^{13}\mathrm{C}$  NMR spectrum of **3h** (125 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **3i** (125 MHz, CDCl<sub>3</sub>)





3j

<sup>13</sup>C NMR spectrum of **3j** (125 MHz, CDCl<sub>3</sub>)

110 90 80 f1 (ppm)

 -0.05

-0.00

-0.05



<sup>13</sup>C NMR spectrum of **3k** (125 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **3l** (125 MHz, CDCl<sub>3</sub>)





<sup>13</sup>C NMR spectrum of **3m** (125 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **3n** (125 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR spectrum of **30** (100 MHz, CDCl<sub>3</sub>)



 $^{13}\text{C}$  NMR spectrum of **3p** (125 MHz, CDCl<sub>3</sub>)



 $^{13}\text{C}$  NMR spectrum of 3q (125 MHz, CDCl<sub>3</sub>)



<sup>1</sup>H NMR spectrum of **5a** (400 MHz, CDCl<sub>3</sub>)



5a

# HPLC spectra of products

3a





|     | RT     | Area     | % Area | Height  | % Height |
|-----|--------|----------|--------|---------|----------|
| 1   | 16.713 | 174278   | 49.88  | 7856    | 56.90    |
| 2   | 22.239 | 175121   | 50.12  | 5951    | 43.10    |
| Sum |        | 349398.9 | 100.0  | 13807.2 | 100.0    |
|     |        |          |        |         |          |



| <br>Processed | Channel: | W2489 | ChA | 254nn |
|---------------|----------|-------|-----|-------|
| <br>Processed | Channel: | W2489 | ChA | 254nn |

|     | RT     | Area     | % Area | Height  | % Height |
|-----|--------|----------|--------|---------|----------|
| 1   | 16.978 | 21177    | 3.42   | 1011    | 4.76     |
| 2   | 22.762 | 597447   | 96.58  | 20226   | 95.24    |
| Sum |        | 618623.7 | 100.0  | 21237.2 | 100.0    |



|     | RT     | Area     | % Area | Height  | % Height |
|-----|--------|----------|--------|---------|----------|
| 1   | 15.112 | 143503   | 50.05  | 6434    | 58.04    |
| 2   | 21.462 | 143211   | 49.95  | 4652    | 41.96    |
| Sum |        | 286714.7 | 100.0  | 11085.9 | 100.0    |



|     | RT     | Area      | % Area | Height   | % Height |
|-----|--------|-----------|--------|----------|----------|
| 1   | 15.255 | 337398    | 3.67   | 17829    | 5.92     |
| 2   | 20.594 | 8854532   | 96.33  | 283096   | 94.08    |
| Sum |        | 9191929.1 | 100.0  | 300925.0 | 100.0    |

3b



|     | RT     | Area     | % Area | Height  | % Height           |
|-----|--------|----------|--------|---------|--------------------|
| 1   | 12.456 | 352580   | 50.20  | 20332   | <mark>67.71</mark> |
| 2   | 26.293 | 349754   | 49.80  | 9697    | 32.29              |
| Sum |        | 702334.2 | 100.0  | 30029.0 | 100.0              |



|     | RT     | Area      | % Area | Height   | % Height |
|-----|--------|-----------|--------|----------|----------|
| 1   | 12.403 | 304884    | 3.80   | 18183    | 8.39     |
| 2   | 26.822 | 7711593   | 96.20  | 198655   | 91.61    |
| Sum |        | 8016476.8 | 100.0  | 216838.3 | 100.0    |





|     | RT     | Area     | % Area | Height  | % Height |
|-----|--------|----------|--------|---------|----------|
| 1   | 10.334 | 14224    | 3.36   | 1063    | 7.85     |
| 2   | 24.094 | 409638   | 96.64  | 12479   | 92.15    |
| Sum |        | 423862.3 | 100.0  | 13542.0 | 100.0    |





|     | RT     | Area     | % Area | Height  | % Height |
|-----|--------|----------|--------|---------|----------|
| 1   | 8.646  | 2347     | 0.72   | 189     | 1.17     |
| 2   | 12.814 | 322492   | 99.28  | 16024   | 98.83    |
| Sum |        | 324838.0 | 100.0  | 16213.3 | 100.0    |





|     | RT     | Area      | % Area | Height   | % Height |
|-----|--------|-----------|--------|----------|----------|
| 1   | 11.192 | 2654031   | 49.92  | 181460   | 70.69    |
| 2   | 25.494 | 2662036   | 50.08  | 75255    | 29.31    |
| Sum |        | 5316067.8 | 100.0  | 256714.6 | 100.0    |



|     | RT     | Area      | % Area | Height  | % Height |
|-----|--------|-----------|--------|---------|----------|
| 1   | 11.225 | 131193    | 5.34   | 8901    | 11.87    |
| 2   | 25.337 | 2326418   | 94.66  | 66079   | 88.13    |
| Sum |        | 2457610.2 | 100.0  | 74979.8 | 100.0    |

3f



3g

|     | RT     | Area     | % Area | Height  | % Height |
|-----|--------|----------|--------|---------|----------|
| 1   | 13.595 | 474432   | 50.00  | 22447   | 53.15    |
| 2   | 15.346 | 474340   | 50.00  | 19789   | 46.85    |
| Sum |        | 948771.8 | 100.0  | 42236.3 | 100.0    |



|     | RT     | Area      | % Area | Height   | % Height |
|-----|--------|-----------|--------|----------|----------|
| 1   | 13.659 | 18635     | 0.34   | 1150     | 0.48     |
| 2   | 15.313 | 5462724   | 99.66  | 238270   | 99.52    |
| Sum |        | 5481359.2 | 100.0  | 239420.5 | 100.0    |



|     | RT     | Area      | % Area | Height  | % Height |
|-----|--------|-----------|--------|---------|----------|
| 1   | 11.852 | 872041    | 49.94  | 51911   | 54.86    |
| 2   | 14.228 | 874108    | 50.06  | 42707   | 45.14    |
| Sum |        | 1746148.8 | 100.0  | 94617.8 | 100.0    |



| _ | Processed | Channel: | W2489 | ChA | 254nm |
|---|-----------|----------|-------|-----|-------|
|   |           |          |       |     |       |

|     | RT     | Area     | % Area | Height  | % Height |
|-----|--------|----------|--------|---------|----------|
| 1   | 11.465 | 46340    | 4.80   | 2975    | 6.67     |
| 2   | 13.815 | 918350   | 95.20  | 41630   | 93.33    |
| Sum |        | 964690.2 | 100.0  | 44605.2 | 100.0    |

3h





2531455.7

100.0

73860.0

100.0

Sum

|     | RT     | Area      | % Area | Height  | % Height |
|-----|--------|-----------|--------|---------|----------|
| 1   | 21.847 | 279820    | 9.22   | 10549   | 13.57    |
| 2   | 31.784 | 2756612   | 90.78  | 67218   | 86.43    |
| Sum |        | 3036432.6 | 100.0  | 77767.6 | 100.0    |

3i





|     | RT     | Area      | % Area | Height  | % Height           |
|-----|--------|-----------|--------|---------|--------------------|
| 1   | 16.357 | 524036    | 49.35  | 22693   | <mark>63.91</mark> |
| 2   | 29.409 | 537831    | 50.65  | 12814   | 36.09              |
| Sum |        | 1061867.3 | 100.0  | 35506.7 | 100.0              |



| — P | rocessed | Channel: | W2489 | ChA | 254nm |
|-----|----------|----------|-------|-----|-------|
|     |          |          |       |     |       |

|     | RT     | Area     | % Area | Height  | % Height |
|-----|--------|----------|--------|---------|----------|
| 1   | 17.330 | 20744    | 3.94   | 378     | 3.10     |
| 2   | 29.392 | 505944   | 96.06  | 11837   | 96.90    |
| Sum |        | 526688.5 | 100.0  | 12214.7 | 100.0    |

3j



|     |        | Alea      | 70 Alea | Thergint | 70 Height |
|-----|--------|-----------|---------|----------|-----------|
| 1   | 11.968 | 2023798   | 50.58   | 110677   | 53.52     |
| 2   | 13.755 | 1977672   | 49.42   | 96130    | 46.48     |
| Sum |        | 4001470.0 | 100.0   | 206806.9 | 100.0     |
|     |        |           |         |          |           |



| — Processed Channel: VV2489 ChA 254hr |  | Processed | Channel: | W2489 | ChA | 254nr |
|---------------------------------------|--|-----------|----------|-------|-----|-------|
|---------------------------------------|--|-----------|----------|-------|-----|-------|

|     | RT     | Area      | % Area | Height  | % Height |
|-----|--------|-----------|--------|---------|----------|
| 1   | 11.997 | 56005     | 5.29   | 3724    | 7.08     |
| 2   | 13.787 | 1002951   | 94.71  | 48906   | 92.92    |
| Sum |        | 1058956.1 | 100.0  | 52630.2 | 100.0    |



|     | RT     | Area     | % Area | Height  | % Height |
|-----|--------|----------|--------|---------|----------|
| 1   | 12.075 | 382746   | 49.57  | 21334   | 57.26    |
| 2   | 16.335 | 389419   | 50.43  | 15925   | 42.74    |
| Sum |        | 772165.2 | 100.0  | 37258.8 | 100.0    |



|     | RT     | Area      | % Area | Height   | % Height |
|-----|--------|-----------|--------|----------|----------|
| 1   | 12.081 | 144278    | 5.41   | 9042     | 8.08     |
| 2   | 16.360 | 2521032   | 94.59  | 102893   | 91.92    |
| Sum |        | 2665309.2 | 100.0  | 111934.6 | 100.0    |

31



|     | RT     | Area     | % Area | Height  | % Height |
|-----|--------|----------|--------|---------|----------|
| 1   | 19.377 | 474775   | 49.92  | 19351   | 58.03    |
| 2   | 27.107 | 476268   | 50.08  | 13994   | 41.97    |
| Sum |        | 951042.8 | 100.0  | 33344.7 | 100.0    |



|     | RT     | Area      | % Area | Height  | % Height |
|-----|--------|-----------|--------|---------|----------|
| 1   | 19.586 | 30348     | 2.08   | 1240    | 2.92     |
| 2   | 27.244 | 1425926   | 97.92  | 41273   | 97.08    |
| Sum |        | 1456274.0 | 100.0  | 42512.7 | 100.0    |

3m



|     | RT     | Area     | % Area | Height  | % Height           |
|-----|--------|----------|--------|---------|--------------------|
| 1   | 10.671 | 256787   | 50.18  | 17918   | <mark>58.08</mark> |
| 2   | 14.861 | 254912   | 49.82  | 12932   | 41.92              |
| Sum |        | 511698.4 | 100.0  | 30850.6 | 100.0              |



|     | RT     | Area      | % Area | Height  | % Height |
|-----|--------|-----------|--------|---------|----------|
| 1   | 10.732 | 36383     | 2.44   | 2823    | 3.69     |
| 2   | 14.894 | 1456974   | 97.56  | 73740   | 96.31    |
| Sum |        | 1493356.6 | 100.0  | 76563.1 | 100.0    |



|     | RT     | Area      | % Area | Height  | % Height |
|-----|--------|-----------|--------|---------|----------|
| 1   | 15.454 | 36918     | 2.93   | 2021    | 4.09     |
| 2   | 18.895 | 1223016   | 97.07  | 47439   | 95.91    |
| Sum |        | 1259933.6 | 100.0  | 49459.5 | 100.0    |

30





|     | RT     | Area     | % Area | Height | % Height |
|-----|--------|----------|--------|--------|----------|
| 1   | 14.214 | 18713    | 7.30   | 1089   | 11.28    |
| 2   | 21.083 | 237558   | 92.70  | 8570   | 88.72    |
| Sum |        | 256271.1 | 100.0  | 9659.2 | 100.0    |

S67



|     | RT     | Area     | % Area | Height | % Height |
|-----|--------|----------|--------|--------|----------|
| 1   | 10.978 | 77800    | 49.92  | 5257   | 61.54    |
| 2   | 17.953 | 78035    | 50.08  | 3286   | 38.46    |
| Sum |        | 155834.8 | 100.0  | 8543.1 | 100.0    |



|     | RT                    | Area       | % Area | Height   | % Height |
|-----|-----------------------|------------|--------|----------|----------|
| 1   | 10.662                | 175317     | 1.47   | 14218    | 2.90     |
| 2   | 1 <mark>6.</mark> 585 | 11776689   | 98.53  | 476012   | 97.10    |
| Sum |                       | 11952005.8 | 100.0  | 490229.7 | 100.0    |





50 min



| Peak# | Ret. Time | Area   | Height | Area %  | Height % |  |  |  |  |
|-------|-----------|--------|--------|---------|----------|--|--|--|--|
| 1     | 16.305    | 172179 | 7940   | 95.172  | 95.866   |  |  |  |  |
| 2     | 17.374    | 8734   | 342    | 4.828   | 4.134    |  |  |  |  |
| Total |           | 180913 | 8282   | 100.000 | 100.000  |  |  |  |  |

5a

mV

4 Total