Photoredox Meets Gold Lewis Acid Catalysis in the Alkylative Semipinacol Rearrangement: A Photocatalyst with a Dark Side

Montserrat Zidan, Terry M^cCallum, Léa Thai-Savard, and Louis Barriault*

Centre for Catalysis, Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada. *Correspondence to: lbarriau@uottawa.ca

Table of Contents

1. General Information	2
2. General Procedures	2
GP1- Preparation of α, α -disubstituted ketones	2
3. Product Characterization	3
4. Laser Flash Photolysis Data	14
5. References	15
6. NMR Spectra	16

1. General Information

All reactions were performed under argon atmosphere in Pyrex glassware equipped with a magnetic stir bar, capped with a septum, unless otherwise indicated. All commercial reagents were used without further purification, unless otherwise noted. Reactions were monitored by thin layer chromatography (TLC) analysis. TLC plates were viewed under UV light and stained with potassium permanganate or p-anisaldehyde staining solution. Yields refer to products isolated after purification, unless otherwise stated. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a Bruker AMX 400 MHz. NMR samples were dissolved in deuterated chloroform (unless specified otherwise) and chemical shifts are reported in ppm referenced to residual undeuterated solvent. Data are reported as follows: chemical shift, multiplicity, coupling, integration. Carbon nuclear magnetic resonance (¹C NMR) spectra were recorded on the same Bruker instruments as in proton NMR at 101 MHz. IR spectra were recorded with an Agilent Technologies Cary 630 FTIR Spectrometer equipped with a diamond ATR module. HRMS were obtained on a Kratos Analytical Concept instrument (University of Ottawa Mass Spectrum Centre).

Vinyl substituted cyclic alcohols were synthesized according to previously described methodology.¹ The corresponding TMS protected analogs were synthesized according to Wang's procedure² where the products were purified by partitioning in hexane and water in a separatory funnel and washing 3 times with water (**2a**, **2c**, **2e**) or by flash column chromatography (**2b**, **2d**), where relevant fractions were combined, concentrated and characterized by proton and carbon NMR (400 and 101 MHz, respectively), HR-MS, and IR.

2. General Procedures

General Procedure 1 (GP1). *Preparation of* α, α *-disubstituted ketones.* To an oven dried 8 mL Pyrex screw-top reaction vessel was added the TMS-protected vinyl substituted cyclic alcohol (0.25 mmol, 1.0 equiv), bromoalkane (1.00 mmol, 4.0 equiv), [Au₂(dppm)₂]Cl₂ (0.0125 mmol, 0.05 equiv), Na₂CO₃ (0.75 mmol, 3.0 equiv), 1,4-diazabicyclo[2.2.2]octane (DABCO, 0.10 mmol, 0.4 equiv), and MeCN (2.5 mL, 0.10 M). The reaction vessel was capped, degassed with argon by sparging for 5 minutes (volatile bromoalkanes were added after sparging), then irradiated with a UVA (365 nm) LED at an approximate distance of 5 mm for 16-24 hours. The resulting mixture was filtered through a cotton plug with DCM and concentrated *in vacuo*. The crude mixture was further purified by flash chromatography (0-100% EtOAc:Hexanes), where relevant fractions were combined, concentrated and characterized by proton and carbon NMR (400 and 101 MHz, respectively), HR-MS, and IR.

3. Product Characterization

trimethyl(1-(1-phenylvinyl)cyclobutoxy)silane (2a)

IR (neat, cm⁻¹): 2986(m), 2953(m), 1495(m), 1249(s), 1122(s), 989(s), 836(vs), 776(s), 752(s), 703(s); ¹**H NMR** (400 MHz, CDCl₃) δ = 7.55-7.52 (m, 2H) 7.32-7.26 (m, 3H), 5.45 (d, *J* = 0.7 Hz, 1H), 5.39 (d, *J* = 0.6 Hz, 1H), 2.48-2.41 (m, 2H), 2.38-2.29 (m, 2H), 1.83 (dtt, *J* = 10.9, 9.3, 3.8 Hz, 1H), 1.60-1.49 (m, 1H), 0.00 (s, 9H) ppm; ¹³C **NMR** (101 MHz, CDCl₃) δ = 151.8 (C), 139.6 (C), 128.0 (2 X CH), 127.7 (2 X CH), 127.1 (CH), 112.2 (CH₂), 78.9 (C), 37.1 (2 X CH₂), 13.5 (CH₂), 1.6 (3 X CH₃) ppm; **HRMS** (EI) m/z calc'd for C₁₅H₂₂OSi [M⁺] 246.1440, found 246.1443.

(1-(1-(2-methoxyphenyl)vinyl)cyclobutoxy)trimethylsilane (2b) (substrate begins to degrade over prolonged duration in CDCl₃).

IR (neat, cm⁻¹): 2985(m), 2950(m), 1598(m), 1491(s), 1241(vs), 1121(m), 992(s), 839(vs), 750(vs); ¹**H NMR** (400 MHz, CDCl₃) δ = 7.27-7.16 (m, 2H), 6.95-6.88 (m, 2H), 5.52 (d, *J* = 1.7 Hz, 1H), 5.07 (d, *J* = 1.7 Hz, 1H), 3.80 (s, 3H), 2.51-2.42 (m, 2H), 2.30-2.22 (m, 2H), 1.83-1.72 (m, 1H), 1.47-1.37 (m, 1H), 0.09 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ = 157.0 (C), 150.7 (C), 131.2 (CH), 130.4 (C), 128.1 (CH), 119.8 (CH), 113.4 (CH₂), 110.6 (CH), 79.5 (C), 55.3 (CH₃), 36.7 (2 X CH₂), 13.6 (CH₂), 1.8 (3 X CH₃) ppm; **HRMS** (EI) m/z calc'd for C₁₆H₂₄O₂Si [M⁺] 276.1546, found 276.1537.

(1-(1-(4-chlorophenyl)vinyl)cyclobutoxy)trimethylsilane (2c)

IR (neat, cm⁻¹): 2956(m), 2925(m), 2857(m), 1491(m), 1252(m), 837(m), 669(vs); ¹**H** NMR (400 MHz, CDCl₃) δ = 7.50-7.46 (m, 2H), 7.28 (s, 1H), 7.26 (d, *J* = 2.0 Hz, 1H), 5.46 (d, *J* = 0.6 Hz, 1H), 5.40 (s, 1H), 2.43-2.29 (m, 4H), 1.90-1.78 (m, 2H), 0.00 (s, 9H); ¹³**C** NMR (101 MHz, CDCl₃) δ = 150.6 (C), 137.8 (C), 133.0 (C), 129.2 (2 X CH), 127.8 (2 X CH), 112.5 (CH₂), 78.7 (C), 37.0 (2 X CH₂), 13.5 (CH₂), 1.6 (3 X CH₃) ppm; **HRMS** (EI) m/z calc'd for C₁₅H₂₁OClSi [M⁺] 280.1050, found 280.1099.

(1-(1-(4-methoxyphenyl)vinyl)cyclobutoxy)trimethylsilane (2d)

IR (neat, cm⁻¹): 2986(m), 2952(m), 2901(m), 2835(m), 1608(m), 1509(s), 1246(vs), 1119(m), 988(s), 832(vs), 752(s); ¹**H NMR** (400 MHz, CDCl₃) δ =7.52-7.47 (m, 2H), 6.87-6.81 (m, 2H), 5.41 (d, *J* = 0.8 Hz, 1H), 5.31 (d, *J* = 0.9 Hz, 1H), 3.82 (s, 3H), 2.48-2.39 (m, 2H), 2.37-2.27 (m, 2H), 1.82 (dtt, *J* = 10.9, 9.4, 3.8 Hz, 1H), 1.59-1.48 (m, 1H), 0.00 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ = 158.8 (C), 150.9 (C), 131.8 (C), 129.0 (2 X CH), 113.0 (2 X CH), 110.8 (CH₂), 79.0 (C), 55.2 (CH₃), 37.1 (2 X CH₂), 13.6 (CH₂), 1.6 (3 X CH₃) ppm; **HRMS** (EI): m/z calc'd for C₁₆H₂₄O₂Si [M⁺] 276.1546, found 276.1545.

trimethyl(1-(1-(p-tolyl)vinyl)cyclobutoxy)silane (2e)

IR (neat, cm⁻¹): 2985(m), 2953(m), 2871(m), 1513(m), 1250(s), 1160(m), 1122(m), 991(m), 838(vs), 753(m); ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.47-7.41$ (m, 2H), 7.13-7.09 (m, 2H), 5.44 (d, J = 0.9 Hz, 1H), 5.35 (d, J = 0.8 Hz, 1H), 2.47-2.39 (m, 2H), 2.35 (d, J = 2.6 Hz, 3H), 2.34-2.27 (m, 2H), 1.82 (dtt, J = 10.9, 9.4, 3.9 Hz, 1H), 1.55-1.49 (m, 1H), 0.00 (s, 9H); ¹³C **NMR** (101 MHz, CDCl₃) $\delta = 151.4$ (C), 136.7 (C), 136.5 (C), 128.2 (2 X CH), 127.8 (2 X CH), 111.55 (CH₂), 79.0 (C), 37.1 (2 X CH₂), 21.1 (CH₃), 13.6 (CH₂), 1.6 (3 X CH₃) ppm; **HRMS** (EI) m/z calc'd for C₁₆H₂₄OSi [M⁺] 260.1596, found 260.1593.

2-(cyclohexylmethyl)-2-phenylcyclopentan-1-one (3aa)

Synthesized according to GP1.

IR (neat, cm⁻¹): 2923(s), 2852(m), 1736(vs), 1447(m), 701(m); ¹**H** NMR (400 MHz, CDCl₃) $\delta =$ 7.44-7.28 (m, 4H), 7.25-7.20 (m, 1H), 2.80-2.68 (m, 1H), 2.37-2.16 (m, 2H), 2.09-1.75 (m, 5H), 1.61-1.46 (m, 4H), 1.32-1.22 (m, 1H), 1.19-0.98 (m, 4H), 0.95-0.83 (m, 1H), 0.83-0.70 (m, 1H) ppm; ¹³**C** NMR (101 MHz, CDCl₃) $\delta =$ 219.7 (C), 139.5 (C), 128.4 (2 X CH), 126.9 (2 X CH), 126.6 (CH), 56.7 (C), 46.3 (CH₂), 36.9 (CH₂), 34.7 (CH₂), 34.5 (CH), 34.4 (CH₂) 33.8 (CH₂), 26.3 (CH₂), 26.2 (CH₂), 26.2 (CH₂), 18.6 (CH₂) ppm; **HRMS** (EI): m/z calc'd for C₁₈H₂₄O [M⁺-C₇H₁₂] 160.0883, found 160.0931 (McLafferty rearrangement).

2-phenyl-2-(4-phenylbutyl)cyclopentan-1-one (3ab)

Synthesized according to GP1.

IR (neat, cm⁻¹): 2937(m), 2858(m), 1735(vs), 1497(m), 1454(m), 751(m), 700(vs); ¹H NMR (400 MHz, CDCl₃) δ = 7.42-7.40 (m, 2H), 7.36-7.32 (m, 2H), 7.27-7.23 (m, 3H), 7.18-7.14 (m, 1H), 7.11-7.09 (m, 2H), 2.65-2.58 (m, 1H), 2.57-2.47 (m, 2H), 2.37-2.18 (m, 2H), 2.05-1.88 (m, 3H), 1.88-1.78 (m, 1H), 1.66 (ddd, *J* = 13.6, 11.9, 5.0 Hz, 1H), 1.56-1.47 (m, 2H), 1.23-1.05 (m, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 219.8 (C), 142.5 (C), 139.6 (C), 128.5 (2 X CH), 128.3 (2 X CH), 128.2 (2 X CH), 126.8 (2 X CH), 126.7 (CH), 125.6 (CH), 56.8 (C), 38.7 (CH₂), 37.5 (CH₂), 35.6 (CH₂), 33.8 (CH₂), 31.8 (CH₂), 24.3 (CH₂), 18.7 (CH₂) ppm; **HRMS** (EI): m/z calc'd for C₂₁H₂₄O [M⁺-C₁₀H₁₂] 160.0888, found 160.0861 (McLafferty rearrangement).

ethyl 3-(2-oxo-1-phenylcyclopentyl)propanoate (3ac)

Synthesized according to GP1.

IR (neat, cm⁻¹): 2970(m), 1735(vs), 1497(m), 1447(m), 702(m); ¹**H** NMR (400 MHz, CDCl₃) δ = 7.41-7.31 (m, 4H), 7.28-7.23 (m, 1H), 4.04 (q, *J* = 7.1 Hz, 2H), 2.65-2.56 (m, 1H), 2.39-2.22 (m, 3H), 2.21-2.02 (m, 2H), 2.02-1.92 (m, 3H), 1.89-1.75 (m, 1H), 1.20 (t, *J* = 7.1 Hz, 3H) ppm; ¹³**C** NMR (101 MHz, CDCl₃) δ = 219.0 (C), 173.3 (C), 138.5 (C), 128.7 (2 X CH), 127.0 (CH), 126.9 (2 X CH), 60.3 (CH₂), 55.9 (C), 37.5 (CH₂), 34.5 (CH₂), 33.5 (CH₂), 29.9 (CH₂), 18.6 (CH₂), 14.1 (CH₃) ppm; **HRMS** (ESI): m/z calc'd for C₁₆H₂₀O₃ [M⁺] 260.1412, found 260.1423.

2-(1-adamantanylmethyl)-2-phenylcyclopentan-1-one (3ad)

Synthesized according to GP1.

IR (neat, cm⁻¹): 2903(s), 2849(m), 1736(vs), 1453(m), 1152(m), 702(m); ¹**H** NMR (400 MHz, CDCl₃) δ = 7.49-7.45 (m, 2 H), 7.33-7.28 (m, 2 H), 7.24-7.19 (m, 1 H), 3.05-2.98 (m, 1 H), 2.27-2.07 (m, 3 H), 2.07-1.92 (m, 2 H), 1.90-1.73 (m, 5 H), 1.60-1.58 (m, 1 H), 1.53-1.44 (m, 4 H), 1.35-1.30 (m, 4 H), 1.27-1.20 (m, 3 H) ppm; ¹³**C** NMR (101 MHz, CDCl₃) δ = 219.3 (C), 138.1 (C), 128.3 (2 X CH), 127.6 (2 X CH), 126.7 (CH), 56.2 (C), 53.2 (CH₂), 43.7 (3 X CH₂), 36.8 (3 X CH₂), 35.7 (CH₂), 34.8 (CH₂), 34.3 (C), 28.7 (3 X CH), 18.6 (CH₂) ppm; **HRMS** (EI): m/z calc'd for C₂₂H₂₈O [M⁺] 308.2140, found 308.2104.

2-(2-adamantanylmethyl)-2-phenylcyclopentan-1-one (3ae)

Synthesized according to GP1.

IR (neat, cm⁻¹): 2903(s), 2849(m), 1736(vs), 1453(m), 1152(m), 702(m); ¹**H** NMR (400 MHz, CDCl₃) δ = 7.46-7.41 (m, 2H), 7.35-7.28 (m, 2H), 7.25-7.19 (m, 1H), 2.68 (dddd, *J* = 13.0, 6.0, 3.3, 1.4 Hz, 1H), 2.38-2.24 (m, 2H), 2.08-1.90 (m, 3H), 1.89-1.71 (m, 8H), 1.68-1.59 (m, 4H), 1.56-1.44 (m, 3H), 1.40-1.32 (m, 1H), 1.13-1.07 (m, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 219.7 (C), 139.5 (C), 128.3 (2 X CH), 126.9 (2 X CH), 126.6 (CH), 57.3 (C), 42.2 (CH₂), 40.8 (CH), 39.2 (CH₂), 39.0 (CH₂), 38.1 (CH₂), 37.3 (CH₂), 33.4 (CH₂), 33.3 (CH), 33.3 (CH), 31.8 (CH₂), 31.7 (CH₂), 27.7 (CH), 27.6 (CH), 18.6 (CH₂) ppm; **HRMS** (EI): m/z calc'd for C₂₂H₂₈O [M⁺-C₁₁H₁₆] 160.0888, found 160.0892 (McLafferty rearrangement).

2-phenyl-2-((tetrahydro-2H-pyran-4-yl)methyl)cyclopentan-1-one (3af)

Synthesized according to GP1 (showing rotamers in ¹³C NMR).

IR (neat, cm⁻¹): 2952(m), 2930(m), 2841(m), 1735(vs), 1446(m), 1154(m), 1132(m), 1098(m), 704(s); ¹**H NMR** (400 MHz, CDCl₃) δ = 7.43-7.29 (m, 4H), 7.26-7.21 (m, 1H), 3.86-3.79 (m, 1H), 3.78-3.71 (m, 1H), 3.26-3.14 (m, 1H), 2.84-2.68 (m, 1H), 2.41-2.16 (m, 3H), 2.08-1.92 (m, 3H), 1.90-1.75 (m, 2H), 1.56-1.42 (m, 2H), 1.39-1.19 (m, 2H), 1.17-1.08 (m, 1H) ppm; **Major rotamer** ¹³**C NMR** (101 MHz, CDCl₃) δ = 219.2 (C), 138.8 (C), 128.5 (2 X CH), 126.8 (2 X CH), 126.8 (CH), 67.8 (CH₂), 67.7 (CH₂), 56.4 (C), 45.9 (CH₂), 36.7 (CH₂), 34.3 (CH₂), 34.2 (CH₂), 34.1 (CH₂), 31.8 (CH), 18.6 (CH₂) ppm; **HRMS** (EI): m/z calc'd for C₁₇H₂₂O₂ [M⁺-C₅H₉O] 173.0966, found 173.0956.

2-phenyl-2-(3-((tetrahydro-2H-pyran-2-yl)oxy)propyl)cyclopentan-1-one (3ag) Synthesized according to GP1 (isolated as a 1:1 mixture of diastereomers). **IR** (neat, cm⁻¹): 2943(s), 2870(m), 1736(vs), 1497(m), 1446(m), 1136(m), 1121(m), 1033(vs), 702(m); ¹H NMR (400 MHz, CDCl₃) δ = 7.44-7.39 (m, 2H), 7.30 (dd, *J* = 8.5, 6.9 Hz, 2H), 7.26-7.20 (m, 1H), 4.46 (dd, *J* = 4.5, 2.9 Hz, 0.5H, diastereomer), 4.44 (dd, J = 4.5, 2.9 Hz, 0.5H, diastereomer), 3.81-3.73 (m, 1H), 3.61 (t, *J* = 6.5 Hz, 0.5H, diastereomer), 3.58 (t, *J* = 6.5 Hz, 0.5H, diastereomer), 3.52-3.40 (m, 1H), 3.25 (t, *J* = 6.6 Hz, 0.5H, diastereomer), 3.22 (t, *J* = 6.6 Hz, 0.5H, diastereomer), 2.73-2.59 (m, 1H), 2.38-2.20 (m, 2H), 2.07-1.90 (m, 3H), 1.90-1.74 (m, 2H), 1.74-1.61 (m, 3H), 1.56-1.46 (m, 3H), 1.44-1.29 (m, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 219.6 (C), 139.3 and 139.3 (C, diastereomers), 128.5 (2 X CH), 126.9 (2 X CH), 126.7 (CH), 98.8 and 98.7 (CH, diastereomers), 67.5 (CH₂), 62.4 and 62.3 (CH₂, diastereomers), 30.7 and 30.7 (CH₂, diastereomers), 25.4 (CH₂), 25.1 and 25.0 (CH₂, diastereomers), 19.7 and 19.6 (CH₂, diastereomers), 18.6 (CH₂) ppm; **HRMS** (EI): m/z calc'd for C₁₉H₂₆O₃ [M⁺] 302.1882, found 302.1833.

2-(4-((tert-butyldimethylsilyl)oxy)butyl)-2-phenylcyclopentan-1-one (3ah) Synthesized according to GP1.

IR (neat, cm⁻¹): 2951(m), 2929(m), 2857(m), 1736(vs), 1462(m), 1253(m), 1099(s), 835(vs), 775(vs), 701(s); ¹**H NMR** (400 MHz, CDCl₃) δ = 7.43-7.38 (m, 2H), 7.35-7.30 (m, 2H), 7.25-7.20 (m, 1H), 2.67-2.59 (m, 1H), 2.37-2.20 (m, 2H), 2.15-1.75 (m, 5H), 1.69-1.53 (m, 2H), 1.50-1.33 (m, 2H), 1.22-0.99 (m, 2H), 0.85 (s, 9H), -0.01 (m, 6H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ = 219.8 (C), 139.5 (C), 128.5 (2 X CH), 126.8 (2 X CH), 126.6 (CH), 62.8 (CH₂), 56.8 (C), 38.7 (CH₂), 37.5 (CH₂), 33.8 (CH₂), 33.1 (CH₂), 25.9 (3 X CH₃), 21.0 (CH₂), 18.7 (CH₂), 18.3 (C), -5.3 (2 X CH₃)ppm; **HRMS** (EI): m/z calc'd for C₂₁H₃₄O₂Si [M⁺-C₄H₉] 289.1624, found 289.1585.

(2R,3S,4R,5S,6S)-6-(2-(2-oxo-1-phenylcyclopentyl)ethyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl tetraacetate (3ai)

Synthesized according to GP1 (showing rotamers in ¹H and ¹³C NMR).

IR (neat, cm⁻¹): 2925(m), 1753(vs), 1369(m), 1246(m), 1219(vs), 1073(m), 1037(s); ¹H NMR (400 MHz, CDCl₃) δ = 7.37-7.29 (m, 4H), 7.25-7.20 (m, 1H), 5.60 (d, *J* = 3.1 Hz, 0.5H, rotamer), 5.59 (d, *J* = 3.1 Hz, 0.5H, rotamer), 5.16-5.00 (m, 2H), 4.86-4.76 (m, 1H), 3.50-3.34 (m, 1H), 2.62-2.51 (m, 1H), 2.33-2.23 (m, 2H), 2.10 (s, 3H), 2.10-2.02 (m, 4H), 2.02-2.00 (m, 3H, rotamers), 1.99-1.97 (m, 3H, rotamers), 1.90-1.86 (m, 3H, rotamers), 1.84-1.77 (m, 1H), 1.72-1.63 (m, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 219.1 and 219.1 (C, rotamers) 170.1 and 170.1 (C, rotamers), 169.5 and 169.4 (C, rotamers), 169.3 and 169.2 (C, rotamers), 169.0 and 168.9 (C, rotamers), 139.1 and 138.7 (C, rotamers), 128.6 and 128.6 (2 X CH, rotamers), 126.9 and 126.8 (2 X CH, rotamers), 73.0 and 72.8 (CH, rotamers), 91.8 and 91.8 (CH, rotamers), 74.7 and 74.1 (CH, rotamers), 56.1 and 56.0 (C, rotamers), 37.5 and 37.4 (CH₂, rotamers), 34.6 and 34.2 (CH₂, rotamers), 33.8 and 32.9 (CH₂, rotamers), 20.5 and 20.8 (CH₃, rotamers), 20.6 and 20.5 (2 X CH₃, rotamers), 20.5 and 20.4 (CH₃, rotamers), 20.6 and 20.5 (2 X CH₃, rotamers), 20.5 and 20.4 (CH₃, rotamers), 20.6 and 20.5 (2 X CH₃, rotamers), 20.5 and 20.4 (CH₃, rotamers), 18.6 (CH₂) ppm; HRMS (EI): m/z calc'd for C₂₆H₃₂O₁₀ [M⁺-C₁₅H₂₀O₉] 160.0888, found 160.0952 (McLafferty rearrangement).

2-isobutyl-2-phenylcyclopentanone (3aj)

Synthesized according to GP1.

IR (neat, cm⁻¹): 2955(s), 2932(m), 2871(m), 1736(vs), 1467(m), 1151(m), 750(m), 702(s); ¹**H NMR** (400 MHz, CDCl₃) δ = 7.46-7.41 (m, 2H), 7.36-7.30 (m, 2H), 7.25-7.15 (m, 1H), 2.84-2.73 (m, 1H), 2.34-2.17 (m, 2H), 2.08-1.91 (m, 3H), 1.91-1.75 (m, 1H), 1.53-1.37 (m, 2H), 0.82 (d, *J* = 6.3 Hz, 3H), 0.66 (d, *J* = 6.4 Hz, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ = 219.6 (C), 139.1 (C), 128.4 (2 X CH), 127.0 (2 X CH), 126.6 (CH), 56.8 (C), 47.7 (CH₂), 36.8 (CH₂), 33.9 (CH₂), 25.0 (CH₃), 24.4 (CH), 23.7 (CH₃), 18.6 (CH₂) ppm; **HRMS** (EI): m/z calc'd for C₁₆H₂₀O [M⁺-C₄H₈] 160.0888, found 160.0896 (McLafferty rearrangement).

2-(cyclohexylmethyl)-2-(2-methoxyphenyl)cyclopentan-1-one (3ba) Synthesized according to GP1.

IR (neat, cm⁻¹): 2923(vs), 2850(m), 1736(vs), 1490(s), 1464(m), 1450(m), 1244(vs), 1029(m), 753(s); ¹**H NMR** (400 MHz, CDCl₃) δ = 7.25-7.20 (m, 2H), 6.96-6.91 (m, 1H), 6.90-6.86 (m, 1H), 3.76 (s, 3H), 2.58-2.37 (m, 3H), 1.99-1.90 (m, 3H), 1.85-1.69 (m, 5H), 1.68-1.60 (m, 3H), 1.29-1.10 (m, 5H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ = 221.2 (C), 156.8 (C), 132.8 (C), 127.9 (CH), 127.8 (CH), 120.6 (CH), 112.1 (CH), 55.2 (C), 55.0 (CH₃), 41.2 (CH₂) 37.5 (CH₂), 36.7 (CH₂), 35.5 (CH₂), 35.4 (CH₂), 33.9 (CH), 26.5 (CH₂), 26.4 (CH₂), 26.3 (CH₂), 19.2 (CH₂) ppm; **HRMS** (EI): m/z calc'd for C₁₉H₂₆O₂ [M⁺-C₇H₁₂] 190.0994, found 190.1012 (McLafferty rearrangement).

ethyl 3-(1-(2-methoxyphenyl)-2-oxocyclopentyl)propanoate (3bc)

Synthesized according to GP1.

IR (neat, cm⁻¹): 2966(m), 2941(m), 1732(vs), 1492(m), 1459(m), 1246(m), 1180(m), 1026(m), 756(m); ¹**H NMR** (400 MHz, CDCl₃) δ = 7.27-7.17 (m, 2H), 6.98-6.87 (m, 2H), 4.12 (qd, *J* = 7.2, 2.6 Hz, 2H), 3.75 (s, 3H), 2.61-2.29 (m, 6H), 2.18 (ddd, *J* = 14.5, 10.3, 6.1 Hz, 1H), 2.07-1.87 (m, 3H), 1.24 (t, *J* = 7.2 Hz, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ = 220.2 (C), 173.8 (C), 156.7 (C), 131.0 (C), 128.1 (CH), 127.7 (CH), 120.9 (CH), 112.3 (CH), 60.4 (CH₂), 55.1 (CH₂), 53.4 (C), 38.4 (CH₂), 37.5 (CH₂), 29.4 (CH₂), 27.8 (CH₂), 19.4 (CH₂) 14.2 (CH₂) ppm; **HRMS** (ESI): m/z calc'd for C₁₇H₂₂O₄Na [M⁺] 313.1416, found 313.1416.

ethyl 3-(1-(4-chlorophenyl)-2-oxocyclopentyl)propanoate (3cc)

Synthesized according to GP1.

IR (neat, cm⁻¹): 2977(m), 2961(m), 1735(vs), 1493(m), 1180(m), 1096(m), 1014(m), 837(m); ¹**H NMR** (400 MHz, CDCl₃) δ = 7.36-7.29 (m, 4H), 4.05 (q, *J* = 7.1 Hz, 2H), 2.58-2.49 (m, 1H), 2.36-2.29 (m, 2H), 2.27-2.15 (m, 1H), 2.14-1.90 (m, 5H), 1.87-1.77 (m, 1H), 1.21 (t, *J* = 7.1 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ = 219.5 (C), 173.1 (C), 137.2 (C), 133.1 (C), 128.8 (2 X CH), 128.3 (2 X CH), 60.5 (CH₂), 55.4 (C), 37.5 (CH₂), 34.5 (CH₂), 33.4 (CH₂), 29.8 (CH₂), 18.6 (CH₂), 14.1 (CH₃) ppm; **HRMS** (ESI): m/z calc'd for C₁₆H₁₉ClO₃Na [M⁺] 317.0920, found 317.0922.

2-(cyclohexylmethyl)-2-(4-methoxyphenyl)cyclopentan-1-one (3da)

Synthesized according to GP1.

IR (neat, cm⁻¹): 2921(s), 2849(m), 1733(vs), 1511(vs), 1251(vs), 1185(m), 1037(m), 831(m); ¹**H NMR** (400 MHz, CDCl₃) δ = 7.36-7.30 (m, 2H), 6.89-6.83 (m, 2H), 3.80 (s, 3H), 2.69 (dddd, *J* = 10.8, 6.5, 4.7, 2.5 Hz, 1H), 2.32-2.14 (m, 2H), 2.05-1.75 (m, 4H), 1.65-1.43 (m, 5H), 1.31-1.22 (m, 1H), 1.16-1.00 (m, 4H), 0.94-0.83 (m, 1H), 0.82-0.69 (m, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ = 219.8 (C), 158.2 (C), 131.2 (C), 128.0 (2 X CH), 113.8 (2 X CH), 56.0 (C), 55.2 (CH₃), 46.3 (CH₂), 36.7 (CH₂), 34.7 (CH₂), 34.4 (CH), 34.4 (CH₂), 33.9 (CH₂), 26.3 (CH₂), 26.2 (CH₂), 26.2 (CH₂), 18.6 (CH₂) ppm; **HRMS (EI**) m/z calc'd for C₁₉H₂₆O₂ [M⁺] 286.1933, found 286.1916.

ethyl 3-(1-(4-methoxyphenyl)-2-oxocyclopentyl)propanoate (3dc) Synthesized according to GP1.

IR (neat, cm⁻¹): 2959(m), 1735(vs), 1512(s), 1253(s), 1186(m), 1034(m), 836(m); ¹**H** NMR (400 MHz, CDCl₃) δ = 7.29 (d, *J* = 8.8 Hz, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 4.04 (q, *J* = 7.3 Hz, 2H), 3.79 (s, 3H), 2.58-2.54 (m, 1H), 2.33-2.19 (m, 3H), 2.15-2.03 (m, 2H), 1.98-1.78 (m, 4H), 1.19 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 219.0 (C), 173.3 (C), 158.6 (C), 130.1 (C), 128.0 (2 X CH), 114.0 (2 X CH), 60.3 (CH₂), 55.2 (C), 55.2 (CH₃), 37.3 (CH₂), 34.4 (CH₂), 33.5 (CH₂), 29.9 (CH₂), 18.5 (CH₂), 14.1 (CH₃) ppm; **HRMS (EI)** m/z calc'd for C₁₇H₂₂O₄ [M⁺] 290.1518, found 290.1532.

2-(cyclohexylmethyl)-2-(p-tolyl)cyclopentan-1-one (3ea)

Synthesized according to GP1.

IR (neat, cm⁻¹): 2921(vs), 2851(m), 1736(vs), 1512(m), 1449(m), 842(m); ¹**H** NMR (400 MHz, CDCl₃) δ = 7.32-7.28 (m, 2H), 7.15-7.10 (m, 2H), 2.72 (ddq, *J* = 12.8, 6.0, 2.1 Hz, 1H), 2.39-2.30 (m, 4H), 2.28-2.15 (m, 2H), 2.04-1.75 (m, 5H), 1.55-1.46 (m, 3H), 1.34-1.24 (m, 2H), 1.18-1.01 (m, 5H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 219.8 (C), 136.3 (C), 136.2 (C), 129.2 (2 X CH), 126.8 (2 X CH), 56.4 (C), 46.3 (CH₂), 36.8 (CH₂), 34.8 (CH₂), 34.5 (CH), 34.4 (CH₂), 33.8 (CH₂), 26.3 (CH₂), 26.2 (CH₂), 26.2 (CH₂), 20.93 (CH₃), 18.63 (CH₂) ppm; **HRMS** (EI) m/z calc'd for C₁₉H₂₆O [M⁺] 270.1984, found 270.1978.

ethyl 3-(2-oxo-1-(p-tolyl)cyclopentyl)propanoate (3ec)

Synthesized according to GP1.

IR (neat, cm⁻¹): 2966(m), 2935(m), 2889(m), 1735(vs), 1183(m), 1160(m); ¹**H** NMR (400 MHz, CDCl₃) δ = 7.26 (d, *J* = 7.8 Hz, 2H), 7.18-7.11 (m, 2H), 4.04 (q, *J* = 7.1 Hz, 2H), 2.59 (ddt, *J* = 9.8, 6.2, 2.1 Hz, 1H), 2.33 (s, 3H), 2.31-2.23 (m, 3H), 2.11 (ddd, *J* = 17.4, 10.7, 5.0 Hz, 2H), 2.00-1.89 (m, 3H), 1.86-1.75 (m, 1H), 1.20 (t, *J* = 7.1 Hz, 3H) ppm; ¹³**C** NMR (101 MHz, CDCl₃) δ = 219.1 (C), 173.3 (C), 136.7 (C), 135.3 (C), 129.4 (2 X CH), 126.8 (2 X CH), 60.3 (CH₂), 55.6 (C), 37.4 (CH₂), 34.4 (CH₂), 33.5 (CH₂), 30.0 (CH₂), 20.9 (CH₃), 18.6 (CH₂), 14.2 (CH₃) ppm; **HRMS** (ESI) m/z calc'd for C₁₇H₂₂O₃ [M⁺-C₂H₅] 245.1178, found 245.1134.

2-(2-cyclobutylethyl)-2-phenylcyclopentan-1-one (3ak)/2-(hex-5-enyl)-2-phenylcyclopentan-1-one (3ak') (55:45)

Synthesized according to GP1 (NMR determined by deduction from experiment using **1l** arising in only **3ak'**).

IR (neat, cm⁻¹): 2965 (m), 2931 (m), 2858 (m), 1735 (vs), 1446 (m), 1156 (m), 701 (s);

3ak: ¹**H NMR** (400 MHz, CDCl₃) δ = 7.44-7.38 (m, 2H), 7.38-7.30 (m, 2H), 7.27-7.21 (m, 1H), 2.67-2.57 (m, 1H), 2.32-2.22 (m, 1H), 2.16-2.07 (m, 1H), 2.07-1.67 (m, 8H), 1.52-1.40 (m, 4H), 1.21-1.01 (m, 2H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ = 219.7 (C), 139.6 (C), 128.5 (2 X CH), 126.8 (2 X CH), 126.6 (CH), 56.4 (C), 37.5 (CH₂), 36.3 (CH₂), 36.1 (CH) 34.0 (CH₂), 31.8 (CH₂), 28.0 (CH₂), 27.9 (CH₂), 18.7 (CH₂), 18.2 (CH₂) ppm.

3ak': ¹**H NMR** (400 MHz, CDCl₃) δ = 7.44-7.38 (m, 2H), 7.38-7.30 (m, 2H), 7.27-7.21 (m, 1H), 5.72 (ddt, *J* = 16.9, 10.2, 6.7 Hz, 1H), 4.98-4.85 (m, 2H), 2.67-2.57 (m, 1H), 2.37-2.19 (m, 2H), 2.07-1.91 (m, 4H), 1.91-1.78 (m, 1H), 167-1.59 (m,1H), 1.66-1.58 (m, 1H) 1.36-1.28 (m, 2H), 1.19-0.99 (m, 2H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ = 219.9 (C), 139.5 (C), 138.8 (CH), 128.5 (2 X CH), 126.8 (2 X CH), 126.7 (CH), 114.3 (CH₂), 56.8 (C), 38.7 (CH₂), 37.5 (CH₂), 33.8 (CH₂), 33.5 (CH₂), 29.2 (CH₂), 24.1 (CH₂), 18.7 (CH₂)ppm;

HRMS (EI): m/z calc'd for $C_{17}H_{22}O$ [M⁺-C₆H₁₀] 160.0888, found 160.0904 (McLafferty rearrangement).

2-(2-cyclopentylethyl)-2-phenylcyclopentan-1-one (3am)

Synthesized according to GP1.

IR (neat, cm⁻¹): 2946(s), 2863(m), 1737(vs), 1450(m), 1154(m), 701(m); ¹**H** NMR (400 MHz, CDCl₃) δ = 7.44-7.37 (m, 2H), 7.37-7.29 (m, 2H), 7.26-7.21 (m, 1H), 2.71-2.54 (m, 1H), 2.38-2.21 (m, 2H), 2.06-1.77 (m, 4H), 1.74-1.58 (m, 4H), 1.54-1.39 (m, 3H), 1.31-1.24 (m, 1H), 1.17-0.87 (m, 4H) ppm; ¹³**C** NMR (101 MHz, CDCl₃) δ = 219.9 (C), 139.8 (C), 128.4 (2 X CH), 126.8 (2 X CH), 126.6 (CH), 56.8 (C), 40.3 (CH), 38.1 (CH₂), 37.6 (CH₂), 33.7 (CH₂), 32.6 (CH₂), 32.5 (CH₂), 31.0 (CH₂), 25.1 (CH₂), 18.7 (CH₂) ppm; **HRMS** (EI): m/z calc'd for C₁₈H₂₄O [M⁺-C₇H₁₂] 160.0888, found 160.0891 (McLafferty rearrangement).

2-(pent-4-enyl)-2-phenylcyclopentan-1-one (3an')

Synthesized according to GP1.

IR (neat, cm⁻¹): 2938(m), 2859(m), 1736(vs), 1154(m), 912(m), 701(s); ¹**H** NMR (400 MHz, CDCl₃) δ = 7.43-7.38 (m, 2H), 7.37-7.29 (m 2H), 7.26-7.21 (m, 1H), 5.70 (ddt, *J* = 16.9, 10.2, 6.7, 1H), 4.96-4.87 (2H), 2.72-2.58 (m, 1H), 2.34-2.19 (m, 2H), 2.06-1.89 (m, 5H), 1.89-1.78 (m, 1H), 1.63 (ddd, *J* = 13.7, 11.7, 5.1 Hz, 1H), 1.25-1.08 (m, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 219.7 (C), 139.5 (C), 138.4 (CH), 128.5 (2 X CH), 126.8 (2 X CH), 126.7 (CH), 114.6 (CH₂), 56.7 (C), 38.4 (CH₂), 37.5 (CH₂), 34.0 (CH₂), 33.9 (CH₂), 24.0 (CH₂), 18.7 (CH₂) ppm; **HRMS** (EI): m/z calc'd for C₁₆H₂₀O [M⁺-C₅H₈] 160.0888, found 160.0893 (McLafferty rearrangement).

2'-cyclohexyl-3',4'-dihydro-2'H-spiro[cyclopentane-1,1'-naphthalen]-2-one (3fa)

Synthesized according to GP1 (isolated as a 2:1 mixture of diastereomers).

IR (neat, cm⁻¹): 2960 (m), 2933 (m), 1729 (vs), 1185 (m), 1160 (m), 754 (m); ¹**H NMR** (400 MHz, CDCl₃) δ = 7.18-6.96 (m, 4H), 2.93 (dt, *J* = 16.8, 4.7 Hz, 1H, 2:1 diastereomers), 2.77 (ddd, *J* = 16.5, 10.5, 5.7 Hz, 1H), 2.49 (d, *J* = 320.7 Hz, 4H), 2.23-2.08 (m, 3H), 1.81-1.62 (m, 7H), 1.55-1.42 (m, 2H), 1.39-1.25 (m, 4H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ = 222.4 (C), 141.9 (C), 137.5 (C), 129.2 (CH), 127.4 (CH), 126.1 (CH), 126.0(CH), 55.2 (C), 50.3 (CH), 40.3 (CH₂), 40.2 (CH₂), 38.3 (CH), 34.6 (CH₂), 30.1 (CH₂), 28.5 (CH₂), 27.2 (CH₂), 27.0 (CH₂), 26.5 (CH₂), 20.3 (CH₂), 20.2 (CH₂) ppm; **HRMS (EI**) m/z calc'd for C₂₀H₂₆O [M⁺] 282.1984, found 282.2015.

ethyl 2-(2-oxo-3',4'-dihydro-2'H-spiro[cyclopentane-1,1'-naphthalen]-2'-yl)acetate (3fc) Synthesized according to GP1 (isolated as a 2:1 mixture of diastereomers). IR (neat, cm⁻¹): 2960 (m), 2935 (m), 1730 (vs), 1186 (m), 1162 (m); ¹H NMR (400 MHz, CDCl₃) δ = 7.17-7.10 (m, 2H), 7.10-7.04 (m, 1H), 6.83-6.77 (m, 1H), 4.11 (qq, *J* = 10.8, 7.1 Hz, 2H), 2.86 (ddd, *J* = 17.6, 11.8, 5.9 Hz, 1H), 2.73 (ddd, *J* = 17.4, 6.0, 2.9 Hz, 1H), 2.66-2.55 (m, 3H), 2.49 – 2.32 (m, 2H), 2.27-2.13 (m, 3H), 2.13-2.01 (m, 2H), 1.85 (dddd, *J* = 13.5, 6.0, 4.1, 2.9 Hz, 1H), 1.24 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 222.8 (C), 173.3 (C), 138.9 (C), 136.1 (C), 129.2 (CH), 128.8 (CH), 126.5 (CH), 126.3 (CH), 60.4 (CH₂), 56.5 (C), 42.5 (CH₂), 39.9 (CH₂), 34.3 (CH), 33.7 (CH₂), 24.9 (CH₂), 24.5 (CH₂), 19.0 (CH₂), 14.2 (CH₃) ppm; HRMS (EI) m/z calc'd for C₁₈H₂₂O₃ [M⁺] 286.1569 found 286.1572.

4. Laser Flash Photolysis Data

Figure 1. Kinetic quenching plot showing the quenching of 3 [Au₂(dppm)₂]Cl₂ by DABCO. The slope of this plot corresponds to the bimolecular rate constant. See ref. [3] for transient emission spectrum obtained upon laser pulse excitation (355 nm, 10 mJ) and decay trace (at 560 nm) of 3 [Au₂(dppm)₂]Cl₂ from a [Au₂(dppm)₂]Cl₂ sample purged of oxygen.

5. References

1. X.-Z. Shu, M. Zhang, Y. He, H. Frei, F. D. Toste, J. Am. Chem. Soc., 2014, 136, 5844.

2. C. Yang, Z.-L. Xu, H. Shao, X.-Q. Mou, J. Wang, S.-H. Wang, *Org. Lett.*, 2015, **17**, 5288. 3. C. D. McTiernan, M. Morin, T. McCallum, J. C. Scaiano, L. Barriault, *Catal. Sci. Technol.*, 2016, **6**, 201.

