One-step rapid synthesis of π-conjugated large oligomers via C–H activation coupling

Shi-Yong Liu,*a Di-Gang Wang,a Ai-Guo Zhongb and He-Rui Wen*a

*a School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
b Department of Pharmacy & Chemistry, Taizhou University, Taizhou 317000, P. R. China

Contents

1. Figs. S1 ...S2
2. Scheme S1...S2
3. Fig. S2 and 3..S3
4. Fig. S4 ..S4
5. Fig. S5...S5
6. Fig. S6...S6
7. Fig. S7...S7
8. ¹H and ¹³C NMR, and Maldi-TOF MS spectra...S8-22
Fig. S1 The molecular structures of Herr Pd, Pd\(_2(dba)_3\), PCy\(_3\) and P(o-MeOPh)\(_3\).

Scheme S1 The Pd-catalyzed DA reaction, the reduction of Pd\(^{II}\) pre-catalyst to Pd\(^0\) catalytic species, the catalytic cycle of the DA coupling, and the palladation of C-H bond.
Fig. S2 The reaction between DPP and \(p \)-dibromobenzene with and without ligand \(\text{P(o-MeOPh)}_3 \) using toluene as reaction medium (entries 10 and 11 in Table 1). Digital photos of (a) The reaction mixtures after reacting for 12 h and cooling to room temperature. (b) The TLC analysis of both reaction mixtures, using \(\text{CH}_2\text{Cl}_2 : \text{hexane (2:1, v/v)} \) as eluent, and the spots marked with green and red frame are the reactant DPP and target product \(\text{p-B(DPP)}_2 \), respectively.

Fig. S3 The TLC analysis of the reactions between DPP and \(p \)-dibromobenzene (left) or \(p \)-diiodobenzene (right). (see Entries 12 and 13 in Table 1). The spots marked with green and red frame are the reactant DPP and target product \(\text{p-B(DPP)}_2 \), respectively.
Fig. S4 Digital photos of TLC analysis of the synthetic reactions for the eight oligomers. From left to right are respectively \(p\)-B-(DPP)\(_2\), \(m\)-B-(DPP)\(_2\), \(o\)-B-(DPP)\(_2\), DPP-DPP-DPP, TB-(DPP)\(_3\), Py-(DPP)\(_4\), TBE-(DPP)\(_4\) and SF-(DPP)\(_4\). For all the TLC plates, the spots on the left are the starting DPP, and the spots marked with red dotted frames are the target oligomers.
Fig. S5 The shortest pathways of π-electron delocalization (marked with blue color) of the phenyl-cored DPP-based oligomers *o*-B-(DPP)$_2$, *m*-B-(DPP)$_2$, *p*-B-(DPP)$_2$ and TB-(DPP)$_3$, and the corresponding normalized UV-vis spectra (below).
Fig. S6 DFT optimized geometries of phenyl-cored DPP-based oligomers, o-B-(DPP)$_2$, m-B-(DPP)$_2$, p-B-(DPP)$_2$ and TB-(DPP)$_3$ (the alkyl chains replaced by methyl groups).
Fig. S7 The shortest pathways of π-electron delocalization (marked with blue color) of the Py-, TBE- and SF-(DPP)$_4$ oligomers, and the corresponding normalized UV-vis spectra (below).
Fig. S8 The Uv-vis spectra of the starting DPP, oligomers o-B-(DPP)$_2$, m-B-(DPP)$_2$, p-B-(DPP)$_2$, Py-(DPP)$_4$, TBE-(DPP)$_4$ and SF-(DPP)$_4$ in CHCl$_3$ at concentrations of 4.54, 2.54, 2.03, 1.55, 2.16, 1.89, 1.07, 1.69 and 1.27 × 10$^{-5}$ mol/L.

<table>
<thead>
<tr>
<th>DPP</th>
<th>o-B-(DPP)$_2$</th>
<th>m-B-(DPP)$_2$</th>
<th>p-B-(DPP)$_2$</th>
<th>TB-(DPP)$_3$</th>
<th>DPP-DPP-DPP-DPP</th>
<th>Py-(DPP)$_4$</th>
<th>TBE-(DPP)$_4$</th>
<th>SF-(DPP)$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.02</td>
<td>4.47</td>
<td>5.82</td>
<td>4.38</td>
<td>6.94</td>
<td>7.12</td>
<td>12.61</td>
<td>12.74</td>
</tr>
</tbody>
</table>

Table S1 The extinction coefficients of the DPP materials at λ_{max} (×104 M$^{-1}$ cm$^{-1}$).
Fig. S8 The 1H and 13C NMR spectra of μ-B-(DPP)$_2$ in CDCl$_3$.
Fig. S9 The 1H and 13C NMR spectra of m-B-(DPP)$_2$ in CD$_2$Cl$_2$.
Fig. S10 The 1H and 13C NMR spectra of o-B-(DPP)_2 in CD$_2$Cl$_2$.
Fig. S11 The 1H and 13C NMR spectra of DPP-DPP-DPP in CDCl$_3$.
Fig. S12 The 1H and 13C NMR spectra of TB-(DPP)$_3$ in CDCl$_3$.

S13
Fig. S13 The 1H and 13C NMR spectra of Py-(DPP)$_4$ in CD$_2$Cl$_2$.
Fig. S14 The 1H and 13C NMR spectra of TBE-(DPP)$_4$ in CD$_2$Cl$_2$ and in CDCl$_3$, respectively.
Fig. S15 The 1H and 13C NMR spectra of SF-(DPP)$_4$ in CD$_2$Cl$_2$.
Fig. S16 The MALDI-TOF MS spectrum of p-B-(DPP)$_2$, calcd. 1572.51, found 1572.43.
Fig. S17 The MALDI-TOF MS spectrum of \textit{m-B-(DPP)}_2, calcd. 1572.51, found 1572.31.

Fig. S18 The MALDI-TOF MS spectrum of \textit{o-B-(DPP)}_2, calcd. 1572.51, found 1572.64.
Fig. S19 The MALDI-TOF MS spectrum of **DPP-DPP-DPP**, calcd. 2007.13, found 2007.82.
Fig. S20 The MALDI-TOF MS spectrum of TB-(DPP)$_3$, calcd. 2319.71, found 2319.77.
Fig. S21 The MALDI-TOF MS spectrum of Py-(DPP)_4, calcd. 3191.05, found 3191.63.
Fig. S22 The MALDI-TOF MS spectrum of TBE-(DPP)$_4$, calcd. 3321.34, found 3321.30.
Fig. S23 The MALDI-TOF MS spectrum of SF-(DPP)$_4$, calcd. 3305.20, found 3305.50.