Visible-light-induced iminyl radical formation via

electron-donor-acceptor complexes: A photocatalyst-free approach to

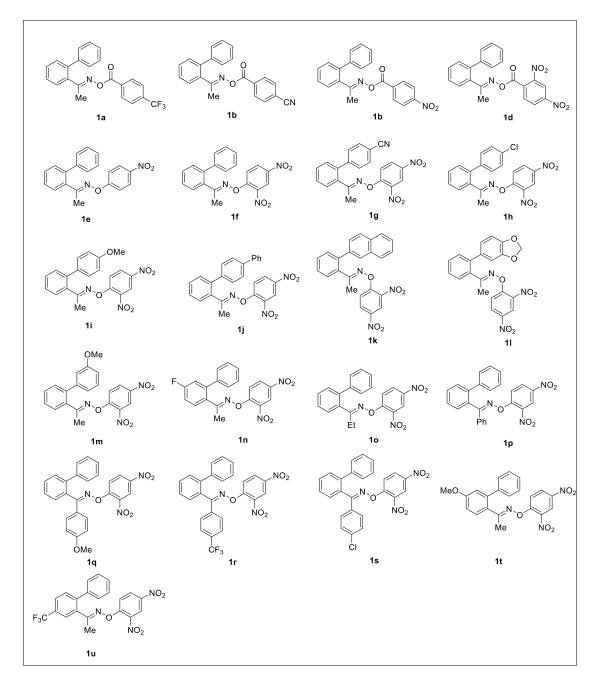
phenanthridines and quinolines

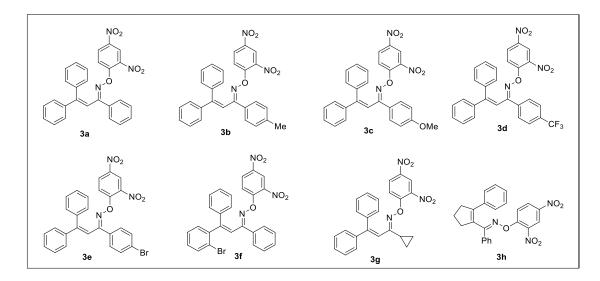
Jingjing Sun,^{†,§} Yanyan He,^{‡,§} Xiao-De An,[‡] Xu Zhang,[†] Lei Yu,^{*,†} and Shouyun Yu^{*,‡}

[†]Guangling College, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China

[‡]State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

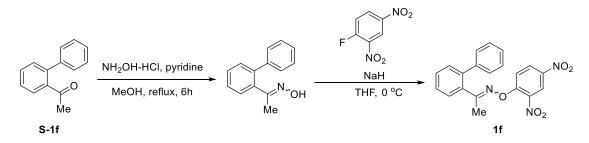
Supporting information


Table of Contents

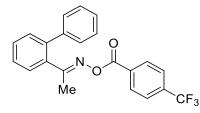

1. General methods	
2. List of oxide ethers	
3. General procedure 1: Synthesis of oxime ethers 1	S4
4. General procedure 2: Synthesis of oxime ethers 3	
5. Optical absorption spectrum of the mixture of 1f and Et ₃ N	S20
6. Determination of the donor/acceptor ratio of EDA in CH ₃ CN	S20
7. Determination of the association constant (<i>K</i> _{EDA})	S21
8. Cyclic voltammetry of 1f	
9. General procedure 3: Synthesis of phenanthridines and quinolines	S24
10. Data of compounds 2, and 4.	
11. References	S35
12. Copies of NMR spectra	

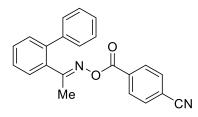
1. General methods.

MeOH, THF was dried according to Purification of Common Laboratory Chemicals. Other reagents were used without further purification. Thin layer chromatography (TLC) was performed on EMD precoated plates (silica gel 60 F254, Art 5715) and visualized by fluorescence quenching under UV light and by staining with phosphomolybdic acid or potassium permanganate, respectively. Column chromatography was performed on EMD Silica Gel 60 (300–400 Mesh) using a forced flow of 0.5–1.0 bar. ¹H NMR (400 MHz), ¹³C NMR (101 MHz) and ¹⁹F (376MHz) were measured on a Bruker AVANCE III–400 spectrometer. Chemical shifts are expressed in parts per million (ppm) with respect to the residual solvent peak. Coupling constants are reported as Hertz (Hz), signal shapes and splitting patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Infrared (IR) spectra were recorded on a Nicolet 6700 spectrophotometer and are reported as wavenumber (cm⁻¹). UV-Vis spectra were recorded in 1 cm path quartz cuvettes on a PerkinElmer Lambda 35 spectrometer.

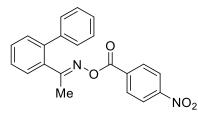

2. List of oxime ethers.

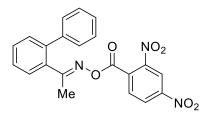
3. General procedure 1: Synthesis of oxime ethers 1.¹

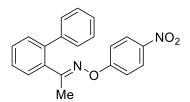

Acyl oximes **1a-1d** were prepared according to the literature.² Oxime ethers **1e** and **1f** was prepared following the General Procedure 1.


A mixture of 1-(biphenyl-2-yl)ethanone (S-1f, 980 mg, 5.0 mmol), hydroxylamine hydrochloride (417 mg, 6.0 mmol) and pyridine (593 mg, 7.5 mmol) in MeOH (20 mL) was stirred under reflux for 6 h. MeOH was then removed under vacuo and the residue was dissolved in EtOAc (25 mL), then extracted with saturated NaCl (25 mL) twice, dried with Na₂SO₄ and concentrated under vacuum. Purification by column chromatography on silica gel (EtOAc:hexane = 1:10), gave the 1-([1,1'-biphenyl]-2-yl)ethan-1-one oxime (0.98 g, 92%).

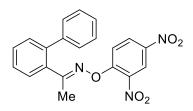
A solution of 1-([1,1'-biphenyl]-2-yl)ethan-1-one oxime (0.98 g, 4.6 mmol) in dry THF (20 mL) under nitrogen was cooled to 0 °C and treated with NaH (0.18 g, 60% dispersion in mineral oil). The mixture was allowed to warm to room temperature over 0.5 h. The fluorobenzene derivative (0.86 g, 4.6 mmol) was then added and stirred for another 10 min. Then, the mixture was poured into saturated NaCl (25 mL)


and extracted with EtOAc (25 mL) twice, dried with Na_2SO_4 and concentrated under vacuum. Purification by recrystallization with EtOAc and hexane, afforded **1f** (1.40g, 74%).

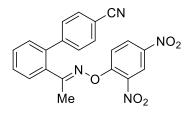

(*E*)-1-([1,1'-biphenyl]-2-yl)ethan-1-one O-(4-(trifluoromethyl)benzoyl) oxime (1a):² 75% for 2 steps . ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.1 Hz, 2H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.61 (dd, *J* = 7.5, 0.9 Hz, 1H), 7.56 – 7.49 (m, 1H), 7.50 – 7.34 (m, 7H), 1.89 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.53, 162.61, 140.68, 140.46, 134.88, 134.75 (q, *J* = 33.1 Hz), 132.53, 130.38, 130.15, 130.09, 129.79, 129.00, 128.70, 127.77, 127.55, 125.61 (q, *J* = 3.7 Hz), 123.60 (q, *J* = 272.4 Hz), 18.36.


(*E*)-4-((1-(Biphenyl-2-yl)ethylideneaminooxy)carbonyl)benzonitrile (1b):² 81% for 2 steps. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, *J* = 8.5 Hz, 2H), 7.78 (d, *J* = 8.5 Hz, 2H), 7.62 – 7.57 (m, 1H), 7.53 (td, *J* = 7.6, 1.3 Hz, 1H), 7.47 – 7.35 (m, 7H), 1.89 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.78, 162.21, 140.68, 140.41, 134.74, 133.13, 132.41, 130.41, 130.23, 130.19, 129.76, 128.99, 128.72, 127.80, 127.56, 117.89, 116.73, 18.40.

(*E*)-1-([1,1'-biphenyl]-2-yl)ethan-1-one O-(4-nitrobenzoyl) oxime (1c): 67% for 2 steps. Solid, m. p. 149 – 152 °C. IR (neat, cm⁻¹) 1735, 1603, 1525, 1347, 1259, 1071, 743. ¹H NMR (400 MHz, CDCl₃) δ 8.36 – 8.24 (m, 4H), 7.64 – 7.57 (m, 1H), 7.53 (td, J = 9.7, 4.8 Hz, 1H), 7.47 – 7.36 (m, 7H), 1.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.92, 161.97, 150.69, 140.71, 140.40, 134.71, 134.69, 130.81, 130.43, 130.26, 129.76, 128.99, 128.73, 127.82, 127.57, 123.74, 18.43. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₁H₁₇N₂O₄: 361.1183; found: 361.1183.

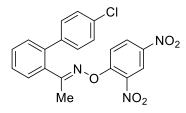


(*E*)-1-([1,1'-biphenyl]-2-yl)ethan-1-one O-(2,4-dinitrobenzoyl) oxime (1d): 37% for 2 steps. Solid, m. p. 117 – 119 °C. IR (neat, cm⁻¹) 1600, 1511, 1341, 1254, 1176, 891, 832. ¹H NMR (400 MHz, CDCl₃) δ 8.88 (d, *J* = 2.1 Hz, 1H), 8.60 – 8.54 (m, 1H), 7.94 (d, *J* = 8.4 Hz, 1H), 7.54 – 7.46 (m, 1H), 7.46 – 7.29 (m, 8H), 1.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.10, 163.19, 148.88, 147.40, 140.72, 140.11, 134.14, 132.90, 131.20, 130.45, 130.32, 129.29, 128.87, 128.73, 128.06, 127.86, 127.51, 119.62, 18.39. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₁H₁₆N₃O₆: 406.1034; found: 406.1034.

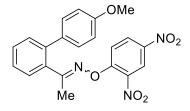


(E)-1-([1,1'-biphenyl]-2-yl)ethan-1-one O-(4-nitrophenyl) oxime (1e): 35% for 2

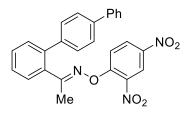
steps. Solid, m. p. 126 – 128 °C. IR (neat, cm⁻¹) 1605, 1590, 1506, 1487, 1332, 1234, 785, 686. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 9.2 Hz, 2H), 7.52 (t, *J* = 6.9 Hz, 2H), 7.47 – 7.34 (m, 7H), 7.18 (d, *J* = 9.2 Hz, 2H), 1.97 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.14, 163.83, 142.34, 140.96, 140.91, 135.29, 130.67, 129.80, 129.33, 128.97, 128.64, 127.56, 127.51, 125.68, 114.47, 17.53. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₀H₁₇N₂O₃: 333.1234; found: 333.1234.

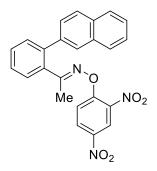


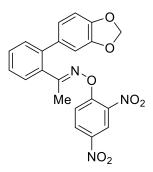
(*E*)-1-([1,1'-biphenyl]-2-yl)ethan-1-one O-(2,4-dinitrophenyl) oxime (1f): 69% for 2 steps. Solid, m. p. 151-153 °C. IR (neat, cm⁻¹) 1599, 1526, 1475, 1347, 1262, 1144, 879, 760. ¹H NMR (400 MHz, CDCl₃) δ 8.88 (d, *J* = 2.7 Hz, 1H), 8.34 (dd, *J* = 9.4, 2.8 Hz, 1H), 7.61 (d, *J* = 9.4 Hz, 1H), 7.58 – 7.52 (m, 2H), 7.50 – 7.33 (m, 7H), 2.11 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.90, 157.38, 141.18, 140.74, 135.94, 134.17, 130.85, 130.28, 129.32, 129.27, 128.90, 128.75, 127.70, 127.61, 122.03, 117.43, 18.37. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₀H₁₆N₃O₅: 378.1084; found: 378.1084.

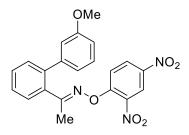


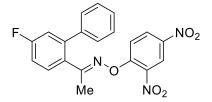
(*E*)-2'-(1-((2,4-dinitrophenoxy)imino)ethyl)-[1,1'-biphenyl]-4-carbonitrile (1g): 30% for 2 steps. Solid, m. p. 182 – 185 °C. IR (neat, cm⁻¹) 1600, 1534, 1516, 1343, 1315, 883, 846, 582. ¹H NMR (400 MHz, CDCl₃) δ 8.89 (d, *J* = 2.7 Hz, 1H), 8.37 (dd, *J* = 9.4, 2.7 Hz, 1H), 7.77 – 7.70 (m, 2H), 7.66 (d, *J* = 9.4 Hz, 1H), 7.63 – 7.48 (m, 5H), 7.45 (dd, *J* = 7.5, 0.7 Hz, 1H), 2.15 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.89, 157.05, 145.45, 141.01, 139.07, 136.06, 134.19, 132.48, 130.62, 130.55, 129.65,

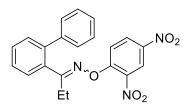

129.61, 129.31, 128.79, 122.14, 118.40, 117.09, 111.69, 18.59. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₁H₁₅N₄O₅: 403.1035; found: 403.1035.

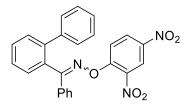

(*E*)-1-(4'-chloro-[1,1'-biphenyl]-2-yl)ethan-1-one O-(2,4-dinitrophenyl) oxime (1h): 42% for 2 steps. Solid, m. p. 148 – 151 °C. IR (neat, cm⁻¹) 1599, 1520, 1469, 1341, 1257, 925, 742. ¹H NMR (400 MHz, CDCl₃) δ 8.88 (d, *J* = 2.7 Hz, 1H), 8.37 (dd, *J* = 9.4, 2.8 Hz, 1H), 7.66 (d, *J* = 9.4 Hz, 1H), 7.58 – 7.38 (m, 6H), 7.34 – 7.29 (m, 2H), 2.13 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.58, 157.24, 140.86, 139.81, 139.14, 136.00, 134.16, 134.02, 130.69, 130.38, 130.18, 129.41, 129.32, 128.97, 127.97, 122.07, 117.28, 18.48. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₀H₁₅ClN₃O₅: 412.0695; found: 412.0695.

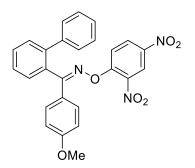

1-(4'-Methoxy-[1,1'-biphenyl]-2-yl)ethan-1-one O-(2,4-dinitrophenyl) oxime (1i): 50% for 2 steps. (E/Z = 1:0.1), Solid, m. p. 111 – 115 °C. IR (neat, cm⁻¹): 1597, 1522, 1342, 1267, 882, 765. ¹H NMR (400 MHz, CDCl₃) δ 8.89-8.87 (m, 1H), 8.38 (dd, J = 9.4, 2.8 Hz, 1H), 8.34 (d, J = 2.7 Hz, 1H), 7.82 (d, J = 9.4 Hz, 1H), 7.71 (d, J = 9.4 Hz, 1H), 7.56 – 7.39 (m, 4.5H), 7.32 – 7.27 (m, 2.2H), 6.98 – 6.92 (m, 2.2H), 3.84 (s, 3H), 3.80 (s, 0.3H), 2.12 (s, 0.3H), 2.06 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.53, 167.12, 159.77, 159.42, 157.45, 157.39, 142.03, 140.97, 140.76, 140.72, 135.97, 134.19, 134.16, 132.81, 130.71, 130.28, 130.00, 129.79, 129.35, 129.25, 127.68, 127.16, 122.07, 121.42, 117.45, 114.71, 114.21, 113.06, 55.35, 18.44, 18.37. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₁H₁₈N₃O₆: 408.1190; found: 408.1190.

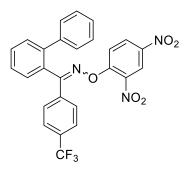

(*E*)-1-([1,1':4',1''-terphenyl]-2-yl)ethan-1-one O-(2,4-dinitrophenyl) oxime (1j): 17% for 2 steps. Solid, m. p. 192 – 194 °C. IR (neat, cm⁻¹) 1599, 1527, 1477, 1336, 1312, 1060, 921, 750. ¹H NMR (400 MHz, CDCl₃) δ 8.90 (d, *J* = 2.7 Hz, 1H), 8.34 (dd, *J* = 9.4, 2.8 Hz, 1H), 7.72 – 7.45 (m, 13H), 7.42 – 7.38 (m, 1H), 2.20 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.96, 157.35, 140.72, 140.62, 140.18, 139.58, 135.96, 134.18, 130.80, 130.33, 129.37, 129.32, 128.93, 127.68, 127.66, 127.40, 127.02, 122.03, 117.37, 18.52. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₆H₂₀N₃O₅: 454.1397; found: 454.1395.

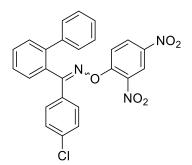

(*E*)-1-(2-(naphthalen-2-yl)phenyl)ethan-1-one O-(2,4-dinitrophenyl) oxime (1k): 50% for 2 steps. Solid, m. p. 121 – 125 °C. IR (neat, cm⁻¹) 1597, 1531, 1514, 1340, 1312, 1064, 923, 760. ¹H NMR (400 MHz, CDCl₃) δ 8.82 (d, *J* = 2.7 Hz, 1H), 8.02 (dd, *J* = 9.4, 2.8 Hz, 1H), 7.90 – 7.82 (m, 4H), 7.60 – 7.43 (m, 7H), 7.37 (d, *J* = 9.4 Hz, 1H), 2.14 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.67, 157.25, 141.15, 140.69, 138.39, 135.86, 134.33, 133.38, 132.51, 131.14, 130.33, 129.32, 129.15, 128.38, 128.05, 127.83, 127.75, 126.94, 126.77, 126.56, 121.96, 117.38, 18.34. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₄H₁₈N₃O₅: 428.1241; found: 428.1241.

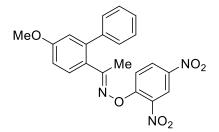

(*E*)-1-(2-(Benzo[d][1,3]dioxol-5-yl)phenyl)ethan-1-one O-(2,4-dinitrophenyl) oxime (1l): 31% for 2 steps. Solid, m. p. 168 – 170 °C. IR (neat, cm⁻¹) 1603, 1528, 1505, 1477, 1342, 1258, 1034, 876, 764. ¹H NMR (400 MHz, CDCl₃) δ 8.89 (d, *J* = 2.7 Hz, 1H), 8.40 (dd, *J* = 9.4, 2.8 Hz, 1H), 7.87 (d, *J* = 9.4 Hz, 1H), 7.55 – 7.46 (m, 2H), 7.46 – 7.38 (m, 2H), 6.87 – 6.79 (m, 3H), 6.00 (s, 2H), 2.10 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.35, 157.42, 147.97, 147.46, 140.75, 140.70, 135.98, 134.38, 134.21, 130.69, 130.26, 129.38, 129.35, 127.39, 122.62, 122.09, 117.40, 109.27, 108.61, 101.35, 18.44. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₁H₁₆N₃O₇: 422.0983; found: 422.0982.

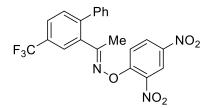

(*E*)-1-(3'-Methoxy-[1,1'-biphenyl]-2-yl)ethan-1-one O-(2,4-dinitrophenyl) oxime (1m): 23% for 2 steps. Solid, m. p. 144 – 147 °C. IR (neat, cm⁻¹) 1602, 1528, 1458, 1340, 1266, 1068, 791. ¹H NMR (400 MHz, CDCl₃) δ 8.89 (d, *J* = 2.7 Hz, 1H), 8.36 (dd, *J* = 9.4, 2.7 Hz, 1H), 7.71 (d, *J* = 9.4 Hz, 1H), 7.57 – 7.43 (m, 4H), 7.33 (td, *J* = 7.5, 1.0 Hz, 1H), 6.96 – 6.90 (m, 3H), 3.80 (s, 3H), 2.11 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.11, 159.76, 157.39, 142.02, 140.97, 140.76, 135.98, 134.19, 130.69, 130.24, 129.78, 129.32, 129.24, 127.67, 122.06, 121.42, 117.44, 114.71, 113.05, 55.33, 18.37. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₁H₁₈N₃O₆: 408.1190; found: 408.1190.


(*E*)-1-(5-Fluoro-[1,1'-biphenyl]-2-yl)ethan-1-one O-(2,4-dinitrophenyl) oxime (1n): 25% for 2 steps. Solid, m. p. 182 – 185 °C. IR (neat, cm⁻¹) 1604, 1529, 1338, 1313, 1254, 916, 839, 698. ¹H NMR (400 MHz, CDCl₃) δ 8.88 (d, *J* = 2.7 Hz, 1H), 8.35 (dd, *J* = 9.4, 2.8 Hz, 1H), 7.62 (d, *J* = 9.4 Hz, 1H), 7.52 (dd, *J* = 8.5, 5.7 Hz, 1H), 7.47 – 7.33 (m, 5H), 7.20 – 7.13 (m, 2H), 2.08 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.08, 163.50 (d, *J* = 251.3 Hz), 157.24, 143.64 (d, *J* = 8.3 Hz), 140.84, 139.63 (d, *J* = 1.6 Hz), 136.00, 131,35 (d, *J* = 8.8 Hz), 130.33 (d, *J* = 3.3 Hz), 129.30, 128.90, 128.70, 128.24, 122.03, 117.78 (d, *J* = 22.2 Hz), 117.37, 114.56 (d, *J* = 21.5 Hz), 18.40. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₀H₁₅FN₃O₅: 396.0990; found: 396.0990.

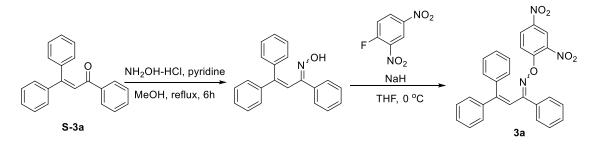

1-([1,1'-Biphenyl]-2-yl)propan-1-one O-(2,4-dinitrophenyl) oxime (10): 73% for 2 steps. (E/Z = 1:0.3), Solid, m. p. 85 – 86 °C. IR (neat, cm⁻¹) 1599, 1522, 1342, 1306, 1266, 865, 740. ¹H NMR (400 MHz, CDCl₃) δ 8.88 (d, J = 2.6 Hz, 1H), 8.76 (d, J = 2.6 Hz, 0.3H), 8.35 – 8.32 (m, 1.2H), 7.75 (d, J = 9.4 Hz, 0.3H), 7.63 (d, J = 9.4 Hz, 1H), 7.59 – 7.23 (m, 11.6H), 2.51 (q, J = 7.6 Hz, 2H), 2.39 (s, 0.5H), 1.08 (t, J = 7.4 Hz, 0.9H), 0.99 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.80, 170.00, 157.53, 157.24, 141.08, 140.68, 140.58, 140.27, 139.31, 135.95, 132.91, 132.27, 130.78, 130.19, 130.01, 129.73, 129.67, 129.32, 129.00, 128.95, 128.70, 128.42, 128.27, 127.69, 127.66, 127.63, 127.52, 127.19, 122.03, 121.79, 117.41, 117.08, 29.28, 24.92, 14.16, 10.45. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₁H₁₈N₃O₅: 392.1241; found: 392.1240.

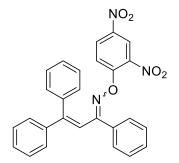

[1,1'-Biphenyl]-2-yl(phenyl)methanone O-(2,4-dinitrophenyl) oxime (1p): 13% for 2 steps. (E/Z = 0.16:1), Solid, m. p. 85 – 88 °C. IR (neat, cm⁻¹) 1601, 1522, 1340, 1257, 1237, 924, 741, 691. ¹H NMR (400 MHz, CDCl₃) δ 8.81 – 8.70 (m, 1.H), 8.45 (dd, J = 9.4, 2.7 Hz, 0.16H), 8.26 – 8.10 (m, 1.11H), 7.67 – 6.95 (m, 16.99H). ¹³C NMR (101 MHz, CDCl₃) δ 165.63, 164.76, 157.43, 156.97, 142.84, 141.64, 141.25, 140.89, 140.67, 140.41, 135.97, 134.30, 134.06, 131.94, 131.41, 131.33, 130.98, 130.94, 130.75, 130.67, 130.47, 130.31, 130.05, 129.07, 128.93, 128.80, 128.75, 128.69, 128.45, 128.16, 128.13, 127.89, 127.51, 127.44, 127.23, 127.15, 121.80, 121.64, 117.67, 116.84. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₅H₁₈N₃O₅: 440.1241; found: 440.1241.


(*E*)-[1,1'-biphenyl]-2-yl(4-methoxyphenyl)methanone O-(2,4-dinitrophenyl) oxime (1q): 40% for 2 steps. Solid, m. p. 152 – 154 °C. IR (neat, cm⁻¹) 1601, 1533, 1521, 1340, 1248, 1144, 742. ¹H NMR (400 MHz, CDCl₃) δ 8.79 (d, *J* = 2.7 Hz, 1H), 8.15 (dd, *J* = 9.4, 2.8 Hz, 1H), 7.61 – 7.54 (m, 3H), 7.51 – 7.38 (m, 3H), 7.35 – 7.20 (m, 5H), 6.95 (d, *J* = 9.4 Hz, 1H), 6.90 – 6.85 (m, 2H), 3.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.99, 161.46, 157.62, 142.80, 141.23, 140.76, 135.93, 134.24, 133.14, 131.34, 130.87, 130.27, 129.06, 128.96, 128.39, 127.41, 127.10, 124.19, 121.79, 117.71, 113.33, 55.41. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₆H₂₀N₃O₆: 470.1347; found: 470.1345.


[1,1'-Biphenyl]-2-yl(4-(trifluoromethyl)phenyl)methanone O-(2,4-dinitrophenyl) oxime (1r): 47% for 2 steps. (E/Z = 1:1), Solid, m. p. 121 – 125 °C. IR (neat, cm⁻¹) 1600, 1536, 1516, 1318, 1126, 1065, 920, 743. ¹H NMR (400 MHz, CDCl₃) δ 8.81 (d, J = 2.7 Hz, 1H), 8.75 (d, J = 2.7 Hz, 1H), 8.32 – 8.26 (m, 2H), 7.77 – 7.44 (m, 16H), 7.34 – 7.07 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 164.54, 163.85, 157.04, 156.60, 142.92, 141.63, 141.21, 141.08, 140.81, 140.12, 137.70, 136.21, 136.07, 135.29, 133.54, 132.83 (q, J = 32.3 Hz), 131.98 (q, J = 33.3 Hz), 131.03, 130.98, 130.83, 130.66, 130.62, 130.25, 130.21, 129.17, 129.04, 128.93, 128.85, 128.73, 128.41, 128.20, 128.10, 127.64, 127.63, 127.40, 127.35, 125.59 (q, J = 3.7 Hz), 124.65 (q, J =3.7 Hz), 123.69 (q, J = 272.7 Hz), 123.60 (q, J = 273.7 Hz), 121.89, 121.69, 117.62, 116.89. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₆H₁₇F₃N₃O₅: 508.1115; found: 508.1114.

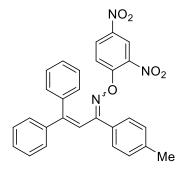
[1,1'-Biphenyl]-2-yl(4-chlorophenyl)methanone O-(2,4-dinitrophenyl) oxime (1s): 18% for 2 steps. (E/Z = 0.3:1), Solid, m. p. 129 – 131 °C. IR (neat, cm⁻¹) 1602, 1533, 1471, 1339, 1315, 1256, 926, 741. ¹H NMR (400 MHz, CDCl₃) δ 8.81 (d, J = 2.7 Hz, 0.3H), 8.74 (d, J = 2.7 Hz, 1H), 8.28 – 8.22 (m, 1.3H), 7.63 – 7.44 (m, 6.8H), 7.40 – 7.32 (m, 2.6H), 7.32 – 7.18 (m, 3.6H), 7.17 – 7.05 (m, 5.2H). ¹³C NMR (100 MHz, CDCl₃) δ 164.69, 163.88, 157.21, 156.76, 142.85, 141.54, 141.05, 140.89, 140.86, 140.19, 137.63, 136.81, 136.09, 133.72, 132.67, 131.89, 131.08, 130.97, 130.64, 130.46, 130.22, 130.14, 129.76, 129.13, 129.00, 128.90, 128.64, 128.41, 128.15, 128.10, 127.53, 127.32, 127.28, 121.86, 121.66, 117.60, 116.82. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₅H₁₇ClN₃O₅: 474.0846; found: 474.0847.


(E)-1-(5-methoxy-[1,1'-biphenyl]-2-yl)ethan-1-one O-(2,4-dinitrophenyl)(1t): 24% for 2 steps. Solid, ¹H NMR (400 MHz, CDCl₃) δ 8.87 (d, *J* = 2.7 Hz, 1H), 8.32 (dd, *J* = 9.4, 2.7 Hz, 1H), 7.55 (d, *J* = 9.4 Hz, 1H), 7.51 – 7.31 (m, 6H), 7.04 – 6.91 (m, 2H), 3.89 (s, 3H), 2.09 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.34, 160.89, 157.44, 142.90, 140.88, 140.58, 135.86, 130.81, 129.24, 128.75, 128.70, 127.72, 126.56, 121.96, 117.40, 116.31, 112.95, 55.52, 18.39. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₁H₁₇N₃O₆: 408.1190; found: 408.1180.

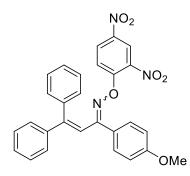

(E)-1-(4-(trifluoromethyl)-[1,1'-biphenyl]-2-yl)ethan-1-one O-(2,4-dinitrophenyl) oxime (1u): 48% for 2 steps. (E/Z = 4:1), Solid, ¹H NMR (400 MHz, CDCl₃) δ 8.90 (d, J = 2.7 Hz, 1H), 8.40 (dd, J = 9.4, 2.7 Hz, 1H), 7.86 – 7.76 (m, 2H), 7.73 (d, J = 9.4 Hz, 1H), 7.61 (d, J = 7.9 Hz, 1H), 7.51 – 7.34 (m, 5H), 2.08 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.95, 157.05, 144.67, 141.03, 139.25, 136.04, 134.91, 131.36, 129.97 (q, J = 33.4 Hz), 129.47, 129.39, 129.02, 128.74, 128.56, 126.90 (q, J = 3.6 Hz), 126.33 (q, J = 3.9 Hz), 123.75 (q, J = 273.4 Hz), 122.07, 117.39, 18.23.

4. General procedure 2: Synthesis of oxime ethers 3.¹

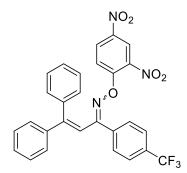
S-3a was prepared from Meyer–Schuster rearrangement of propargyl alcohols into α,β -unsaturated carbonyl compounds.³

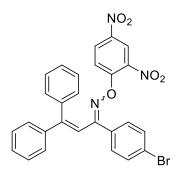


A mixture of 1,3,3-triphenylprop-2-en-1-one (**S-3a**, 1.42 g, 5.0 mmol), hydroxylamine hydrochloride (417 mg, 6.0 mmol) and pyridine (593 mg, 7.5 mmol) in MeOH (20 mL) was stirred under reflux for 6 h. MeOH was then removed under vacuo and the residue was dissolved in EtOAc (25 mL), then extracted with saturated NaCl (25 mL) twice, dried with Na₂SO₄ and concentrated under vacuum. Purification by column chromatography on silica gel (EtOAc : hexane = 1:10), gave the oxime. (1.42 g, 95%) A solution of oxime (0.98 g, 4.6 mmol) in dry THF (20 mL) under nitrogen was cooled to 0 °C and treated with NaH (0.18 g, 60% dispersion in mineral oil). The mixture was allowed to warm to room temperature over 0.5 h. The fluorobenzene derivative (0.86 g, 4.6 mmol) was then added and stirred for another 10 min. Then, the mixture was poured into saturated NaCl (25 mL) and extracted with EtOAc (25 mL) twice, dried with Na₂SO₄ and concentrated under vacuum. Purification by recrystallization with EtOAc and hexane, afforded **3a** (1.71g, 80%).



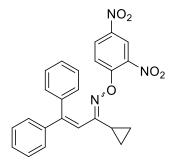
1,3,3-Triphenylprop-2-en-1-one O-(2,4-dinitrophenyl) oxime (3a): 64% for 2 steps. (*E*/*Z* = 1:0.43), Solid, m. p. 101-103 °C. IR (neat, cm⁻¹) 1602, 1519, 1340, 1255, 693,


571. ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, J = 2.2 Hz, 1H), 8.58 (d, J = 2.2 Hz, 0.43H), 8.16 (dd, J = 9.3, 2.3 Hz, 1H), 7.96 (dd, J = 9.4, 2.4 Hz, 0.32H), 7.68 – 6.45 (m, 24.31H). ¹³C NMR (101 MHz, CDCl₃) δ 163.29, 161.77, 157.31, 153.16, 152.20, 141.34, 140.98, 140.78, 140.69, 140.14, 139.19, 135.97, 135.86, 133.34, 131.48, 130.72, 129.75, 129.68, 129.61, 129.30, 129.26, 129.12, 128.96, 128.76, 128.63, 128.57, 128.52, 128.47, 128.38, 128.31, 128.23, 127.93, 127.80, 121.92, 121.72, 121.22, 117.72, 117.20. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₇H₂₀N₃O₅: 466.1397; found: 466.1396.

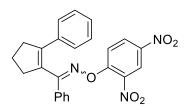

3,3-Diphenyl-1-(p-tolyl)prop-2-en-1-one O-(2,4-dinitrophenyl) oxime (**3b**): 17% for 2 steps. (E/Z = 1:0.8), Solid, m. p. 114-118 °C. IR (neat, cm⁻¹) 1602, 1523, 1340, 1256, 924, 833, 741, 693. ¹H NMR (400 MHz, CDCl₃) δ 8.81 (d, J = 2.7 Hz, 1H), 8.76 (d, J = 2.7 Hz, 0.8H), 8.29 (dd, J = 9.4, 2.7 Hz, 1H), 8.07 (dd, J = 9.4, 2.8 Hz, 0.8H), 7.70 – 7.66 (m, 2.6H), 7.56 (d, J = 8.2 Hz, 2H), 7.45 – 7.24 (m, 15.2H), 7.12 (d, J = 8.0 Hz, 2H), 7.01 (s, 4.4H), 6.79 (s, 1H), 6.65 (s, 0.8H), 6.55 (d, J = 9.4 Hz, 0.8H), 2.39 (s, 2.4H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.03, 161.38, 157.44, 157.33, 152.75, 151.80, 141.36, 141.23, 141.04, 140.72, 140.55, 140.28, 139.27, 135.93, 130.46, 129.91, 129.58, 129.36, 129.22, 129.18, 129.11, 128.97, 128.94, 128.89, 128.70, 128.58, 128.49, 128.35, 128.10, 127.84, 127.65, 121.83, 121.68, 121.36, 117.76, 117.26, 117.04, 21.54, 21.44. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₈H₂₂N₃O₅: 480.1554; found: 480.1554.

1-(4-Methoxyphenyl)-3,3-diphenylprop-2-en-1-one O-(2,4-dinitrophenyl) oxime (3c): 20% for 2 steps. (E/Z = 1:0.8), Solid, m. p. 166-168 °C. IR (neat, cm⁻¹) 1755, 1535, 1353, 1278, 1238, 1051, 743. ¹H NMR (400 MHz, CDCl₃) δ 8.81 (d, J = 2.7 Hz, 1H), 8.29 (dd, J = 9.4, 2.7 Hz, 1H), 7.69 (d, J = 9.4 Hz, 1H), 7.63 (d, J = 8.8 Hz, 2H), 7.45 – 7.37 (m, 5H), 7.02 (s, 5H), 6.83 (d, J = 8.8 Hz, 2H), 6.78 (s, 1H), 3.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.60, 161.74, 157.40, 152.58, 141.05, 140.45, 139.26, 135.89, 129.74, 129.34, 129.09, 128.99, 128.69, 128.50, 128.39, 127.87, 125.54, 121.85, 117.35, 117.01, 113.95, 55.41. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₈H₂₂N₃O₆: 496.1503; found: 496.1501.

3,3-Diphenyl-1-(4-(trifluoromethyl)phenyl)prop-2-en-1-one O-(2,4-dinitrophenyl) oxime (3d): 56% for 2 steps. (E/Z = 1:0.64), Solid, m. p. 58-60 °C. IR (neat, cm⁻¹) 1603, 1542, 1341, 1321, 1063, 925, 831, 697. ¹H NMR (400 MHz, CDCl₃) δ 8.87 (d, J = 2.7 Hz, 1H), 8.78 (d, J = 2.7 Hz, 0.58H), 8.38 (dd, J = 9.4, 2.7 Hz, 1H), 8.22 (dd, J= 9.4, 2.7 Hz, 0.64H), 7.83 (d, J = 9.4 Hz, 1H), 7.66-7.57 (m, 4.95H), 7.49 – 7.34 (m, 10.84H), 7.25-7.24 (m, 0.64H), 7.16 – 7.11 (m, 1.63H), 7.10 – 6.94 (m, 6.56H), 6.80 (s, 0.69H). ¹³C NMR (101 MHz, CDCl₃) δ 162.40, 161.33, 157.00, 156.91, 154.24, 153.47, 141.08, 141.04, 140.44, 139.38, 138.80, 136.90, 136.19, 135.98, 134.81, 131.94 (q, J = 32.3 Hz), 131.84 (q, J = 33.3 Hz), 129.84, 129.80, 129.70, 129.61, 129.51, 129.19, 129.07, 128.82, 128.73, 128.62, 128.57, 128.47, 128.29, 128.03, 127.99, 125.14 (q, J = 4.0 Hz), 124.93 (q, J = 4.0 Hz), 123.69 (q, J = 273.7 Hz), 123.64 (q, J = 275.7 Hz), 122.02, 121.84, 120.47, 117.61, 117.30, 116.37. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₈H₁₉F₃N₃O₅: 534.1271; found: 534.1269.



1-(4-Bromophenyl)-3,3-diphenylprop-2-en-1-one O-(2,4-dinitrophenyl) oxime (**3e**): 24% for 2 steps. (E/Z = 1:0.36), Solid, m. p. 60-65 °C. IR (neat, cm⁻¹) 1601, 1524, 1339, 1256, 1065, 829, 696. ¹H NMR (400 MHz, CDCl₃) δ 8.84 (d, J = 2.7 Hz, 1H), 8.77 (d, J = 2.7 Hz, 0.36H), 8.34 (dd, J = 9.4, 2.7 Hz, 1H), 8.15 (dd, J = 9.4, 2.8 Hz, 0.36H), 7.77 (d, J = 9.4 Hz, 1H), 7.53 – 7.27 (m, 13.70H), 7.20 – 7.18 (m, 0.81H), 7.09 – 6.96 (m, 5.08H), 6.93 (s, 1H), 6.84 (d, J = 9.4 Hz, 0.36H), 6.70 (s, 0.36H). ¹³C NMR (101 MHz, CDCl₃) δ 162.47, 160.99, 157.10, 153.65, 152.92, 141.15, 140.96, 140.90, 140.64, 139.75, 138.95, 136.11, 135.93, 132.24, 131.58, 131.37, 131.23, 130.14, 129.70, 129.64, 129.62, 129.42, 129.09, 129.00, 128.71, 128.57, 128.55, 128.32, 127.97, 127.89, 125.10, 121.94, 121.77, 120.67, 117.64, 117.21, 116.57. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₇H₁₉BrN₃O₅: 544.0503; found: 544.0502.



(1*Z*,2*E*)-3-(2-bromophenyl)-1,3-diphenylprop-2-en-1-one O-(2,4-dinitrophenyl)

oxime (**3f**): 20% for 2 steps. Solid, m. p. 171-173 °C. IR (neat, cm⁻¹) 1600, 1530, 1338, 1304, 927, 754. ¹H NMR (400 MHz, CDCl₃) δ 8.79 (d, J = 2.7 Hz, 1H), 8.29 (dd, J = 9.4, 2.7 Hz, 1H), 7.90 – 7.84 (m, 2H), 7.72 (d, J = 9.4 Hz, 1H), 7.64 – 7.56 (m, 2H), 7.47 – 7.35 (m, 4H), 7.27 – 7.23 (m, 1H), 7.07 – 6.94 (m, 5H), 6.50 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.48, 157.12, 151.38, 142.43, 140.69, 138.44, 135.86, 133.18, 132.79, 131.70, 131.20, 129.80, 128.99, 128.73, 128.44, 128.25, 127.90, 127.61, 122.89, 121.84, 120.62, 116.96. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₇H₁₉BrN₃O₅: 544.0503; found: 544.0502.

1-Cyclopropyl-3,3-diphenylprop-2-en-1-one O-(2,4-dinitrophenyl) oxime (3g): 19% for 2 steps. (E/Z = 1:0.2), Solid, m. p. 84-86 °C. IR (neat, cm⁻¹) 1604, 1522, 1341, 927, 771. ¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, J = 2.7 Hz, 1H), 8.32 (dd, J = 9.4, 2.8 Hz, 1H), 7.70 (d, J = 9.4 Hz, 1H), 7.52 – 7.45 (m, 0.6H), 7.39 – 7.17 (m, 12.59H), 6.81 (s, 1H), 1.37 – 1.31 (m, 1H), 1.26 (s, 0.2H), 1.06 – 1.02 (m, 0.4H), 0.96 – 0.92 (m, 2H), 0.80 – 0.75 (m, 0.4H), 0.71 – 0.64 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 171.09, 166.92, 157.40, 151.57, 141.15, 140.37, 140.21, 139.45, 137.62, 135.82, 131.51, 129.99, 129.75, 129.37, 129.12, 129.07, 128.65, 128.53, 128.46, 128.34, 128.23, 127.89, 126.72, 123.37, 122.04, 121.96, 119.90, 117.43, 117.00, 15.11, 14.74, 9.42, 8.32. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₄H₂₀N₃O₅: 430.1397; found: 430.1397.

Phenyl(2-phenylcyclopent-1-en-1-yl)methanone O-(2,4-dinitrophenyl) oxime (3h): 47% for 2 steps. Solid, m. p. 55-57 °C. IR (neat, cm⁻¹) 1602, 1524, 1341, 1238, 1065, 892, 693. ¹H NMR (400 MHz, CDCl₃) δ 8.81 (d, J = 2.7 Hz, 1H), 8.77 (d, J = 2.7 Hz, 0.37H), 8.36 (dd, J = 9.4, 2.7 Hz, 1H), 8.18 (dd, J = 9.4, 2.8 Hz, 0.45H), 7.91 (d, J =9.4 Hz, 1H), 7.79 – 7.73 (m, 2H), 7.61 – 7.57 (m, 0.9H), 7.54 – 7.52 (m, 0.45H), 7.49 – 7.36 (m, 4.35H), 7.24 – 7.02 (m, 7.97H), 3.10 – 2.94 (m, 23,06H), 2.88 – 2.75 (m, 3.24H), 2.28 – 2.19 (m, 2.51H), 2.16 – 2.10 (m, 1.17H). ¹³C NMR (101 MHz, CDCl₃) δ 165.07, 162.71, 157.47, 157.41, 149.77, 144.51, 140.75, 140.63, 137.14, 136.16, 135.96, 131.94, 131.85, 131.63, 131.44, 130.53, 130.09, 129.86, 129.13, 129.11, 129.03, 128.93, 128.18, 128.09, 127.87, 127.64, 127.59, 127.42, 126.51, 121.95, 121.77, 121.25, 117.58, 116.90, 39.41, 37.86, 37.07, 36.78, 23.36, 22.46. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₇H₁₈BrN₃O₅: 430.1397; found: 430.1397.

5. Optical absorption spectrum of the mixture of 1f and Et₃N.

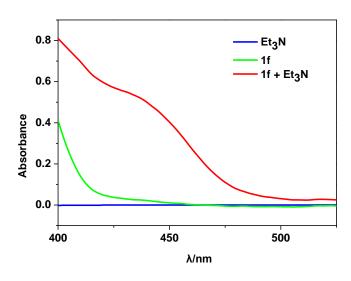


Figure S1: UV/Vis spectrum (recorded 0.5 mmol in CH₃CN) of 1f, and 1:1 mixture of Et₃N and 1f.

6. Determination of the donor/acceptor ratio of EDA in CH₃CN.

A Job's plot was constructed to evaluate the stoichiometry of the EDA complex between oxime ethers and Et_3N in solution. Solutions containing equal molar concentrations of the donor (Et_3N , $1.25*10^{-2}$ M) and the acceptor (**1f**, $1.25*10^{-2}$ M) were prepared and then mixed to cover donor/acceptor ratio from 0% to 100 % donor.

All the absorption spectra were recorded in 1 cm path quartz cuvettes. Table 1 summarizes the observed absorption (Abs(EDA)) associated to the variation of the donor/acceptor ratio at λ_{max} (425 nm) of the EDA complex.

Table S1: Values of Abs(EDA) for EDA in CH₃CN for different donor/acceptor ratios.

ratios.					
Ratio acceptor/donor	(% in Et ₃ N)	1f (10 ⁻² M)	Et ₃ N (10 ⁻² M)	Abs _{EDA}	
10/0	0	1.25	0	0.104	
9/1	10	1.125	0.125	0.262	
8/2	20	1.00	0.25	0.302	
7/3	30	0.875	0.375	0.351	
6/4	40	0.75	0.50	0.399	
5/5	50	0.625	0.625	0.451	
4/6	60	0.50	0.75	0.367	
3/7	70	0.375	0.875	0.341	
2/8	80	0.25	1.00	0.283	
1/9	90	0.125	1.125	0.219	
0/10	100	0	1.25	0	

From the above data, a symmetrical curve was obtained on plotting Abs_{EDA} vs. the donor/acceptor ratio. The maximum absorption is obtained for a 1:1 mixture of **1f** and Et₃N, indicating that this is the stoichiometry of the EDA complex in solution.

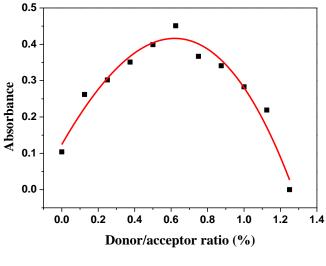


Figure S2: Job's plot

7. Determination of the association constant (K_{EDA}).

The association constant of the EDA complex formed between 1f and Et₃N was determined spectrophotometrically in CH₃CN, employing the Benesi-Hildebrand methodology. We measured the absorption at 425 nm of solutions with constant concentration of 1f ($2.0*10^{-3}$ M) but increased donor/acceptor ratios, adding an excess of Et₃N. All the absorption spectra were recorded in 1 cm path quartz cuvettes. Data obtained by UV-visible for EDA in CH₃CN are showed in table 2.

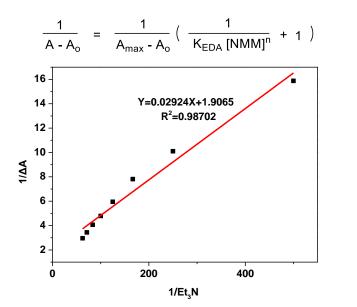
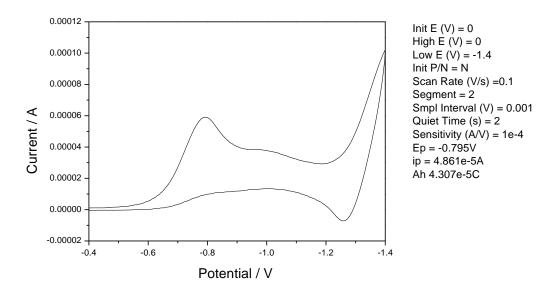
Et ₃ N(10 ⁻³ M)	1/ Et ₃ N (M ⁻¹)	Abs _{EDA}	$1/(Abs_{EDA}-A_0)$
2.0	500	0.095	15.873
4.0	250	0.131	10.101
6.0	166.7	0.16	7.812
8.0	125	0.2	5.952
10.0	100	0.241	4.784

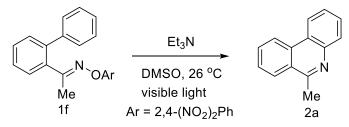
Table S2: Data obtained by UV-visible for EDA in CH₃CN, with $[1f] = 2.0*10^{-3}$ M.

12.0	83.3	0.278	4.065
14.0	71.4	0.323	3.436
16.0	62.5	0.37	2.958

According to equation 1 (A₀ (0.032) and A are the absorption in the absence and presence of Et₃N), respectively, A_{max} is the maximum absorption in the presence of Et₃N, and K_{EDA} is the equilibrium constant. n is the stoichiometry of the EDA complex, herein n = 1), a linear plot shown in Figure 2 was obtained for this system. The equilibrium constant K_{EDA} (K_{EDA} = 1.9066/0.0292 = 65.3) was readily obtained from the slope of these plots (Figure 3).

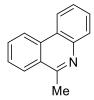
Equation 1

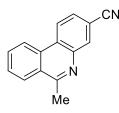

Figure S3: Scott plots

8. Cyclic voltammetry of 1f.

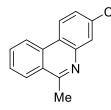
Cyclic voltammogram was recorded in a single cell, constructed from a glass vial, fitted with three electrodes. A glassy carbon disk electrode was used as a working electrode and a platinum wire was used as a counter electrode. The potential was recorded with the reference electrode saturated calomel electrode (SCE) immersed in 0.1 M solution of Et_4NCIO_4 in 7 ml DMSO. And the concentration of **1f** is 0.01M. A scan rate of 100 mV/s was used.



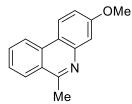
9. General procedure 3: Synthesis of phenanthridines and quinolines.



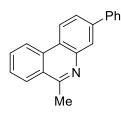
A 10 mL round bottom flask was equipped with a rubber septum and magnetic stir bar and was charged with **1f** (0.1 mmol, 1.0 equiv, 37.7 mg). The flask was evacuated and backfilled with N₂ for 3 times. DMSO (2.0 mL, 0.05 M) and Et₃N (0.4 mmol, 4.0 equiv, 0.056 mL) was then added with syringe under N₂. The mixture was then irradiated by a 5W blue LEDs strip. After the reaction was complete (as judged by TLC analysis), H₂O (2 mL) and EtOAc (2 mL) were added. The layers were separated and the aqueous layer was extracted with EtOAc (2 x 2 mL). The combined organic layers were dried (Na₂SO₄), filtered and evaporated. The residue was then purified by flash chromatography on silica gel (EtOAc : hexane = 1:20) to afford **2a**.


10. Data of compounds 2, and 4.

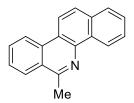
6-Methylphenanthridine (**2a**):² According to *General Procedure*, **2a** was obtained as a white solid (19.3 mg, quantitative yield) from **1f**. Reaction time: 2.5 h. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, *J* = 8.3 Hz, 1H), 8.46 (d, *J* = 8.1 Hz, 1H), 8.16 – 8.06 (m, 2H), 7.79 – 7.73 (m, 1H), 7.71 – 7.54 (m, 3H), 3.00 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.85, 143.67, 132.50, 130.45, 129.34, 128.63, 127.28, 126.50, 126.32, 125.86, 123.76, 122.27, 121.96, 23.40.

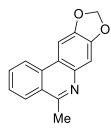


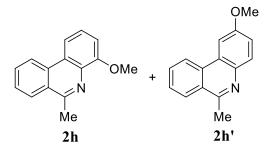
6-Methylphenanthridine-3-carbonitrile (**2b**):² According to *General Procedure*, **2b** was obtained as a white solid (21.4 mg, 98% yield) from **1g**. Reaction time: 0.5 h. ¹H NMR (400 MHz, CDCl₃) δ 8.57 (dd, *J* = 12.8, 8.4 Hz, 2H), 8.37 (d, *J* = 1.6 Hz, 1H), 8.25 (d, *J* = 8.1 Hz, 1H), 7.94 – 7.88 (m, 1H), 7.84 – 7.74 (m, 2H), 3.04 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.17, 143.01, 134.38, 131.33, 131.27, 129.13, 127.87, 127.07, 126.83, 126.65, 123.28, 122.82, 118.82, 111.77, 23.47.



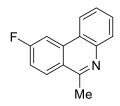
3-Chloro-6-methylphenanthridine (**2c**):² According to *General Procedure*, **2c** was obtained as a white solid (21.9 mg, 96% yield) from **1h**. Reaction time: 0.75 h. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, J = 8.2 Hz, 1H), 8.35 (d, J = 8.7 Hz, 1H), 8.15 (d, J = 8.1 Hz, 1H), 8.04 (s, 1H), 7.80 (t, J = 7.6 Hz, 1H), 7.67 (t, J = 7.6 Hz, 1H), 7.51 (d,

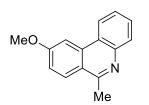

J = 8.7 Hz, 1H), 2.99 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.24, 144.36, 134.14, 132.02, 130.82, 128.62, 127.58, 126.78, 126.63, 125.75, 123.28, 122.21, 122.18, 23.40.


3-Methoxy-6-methylphenanthridine (2d):² According to *General Procedure*, 2d was obtained as a white solid (22.3 mg, quantitative yield) from **1i**. Reaction time: 2.5 h.¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, J = 8.3 Hz, 1H), 8.38 (d, J = 9.0 Hz, 1H), 8.16 (d, J = 8.2 Hz, 1H), 7.77 (t, J = 7.7 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.51 (d, J = 2.7 Hz, 1H), 7.23 (dd, J = 9.0, 2.7 Hz, 1H), 3.97 (s, 3H), 3.01 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.10, 159.40, 145.26, 132.79, 130.54, 126.57, 126.19, 124.98, 123.17, 121.82, 117.77, 117.31, 109.28, 55.55, 23.34.

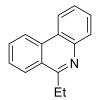

6-Methyl-3-phenylphenanthridine (2e):² According to *General Procedure*, 2e was obtained as a white solid (26.7 mg, 99% yield) from **1j**. Reaction time: 7h. ¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, *J* = 8.2 Hz, 1H), 8.54 (d, *J* = 8.5 Hz, 1H), 8.35 (d, *J* = 1.9 Hz, 1H), 8.19 (d, *J* = 7.8 Hz, 1H), 7.88 – 7.77 (m, 4H), 7.67 (t, *J* = 7.6 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 2H), 7.39 (t, *J* = 7.4 Hz, 1H), 3.04 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.39, 144.04, 141.28, 140.35, 132.41, 130.62, 128.99, 127.68, 127.34, 127.31, 127.23, 126.62, 125.91, 125.45, 122.85, 122.53, 122.36, 23.46.

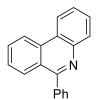
6-Methylbenzo[c]phenanthridine (**2f**):² According to *General Procedure*, **2f** was obtained as a white solid (24.3 mg, quantitative yield) from **1k**. Reaction time: 2.5 h. ¹H NMR (400 MHz, CDCl₃) δ 9.44 (d, *J* = 8.2 Hz, 1H), 8.59 (d, *J* = 8.3 Hz, 1H), 8.43 (d, *J* = 8.9 Hz, 1H), 8.21 (d, *J* = 8.2 Hz, 1H), 7.91 (t, *J* = 8.1 Hz, 2H), 7.82 – 7.56 (m, 4H), 3.12 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.66, 140.47, 133.32, 132.84, 131.87, 130.19, 127.60, 127.18, 126.89, 126.86, 126.74, 126.49, 126.15, 124.84, 122.68, 120.33, 119.86, 23.67.

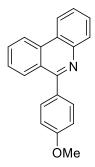

5-Methyl-[1,3]dioxolo[4,5-c]phenanthridine (2g): According to *General Procedure*, **2g** was obtained as a white solid (23.2 mg, 98% yield) from **1l**. Reaction time: 18 h Solid, m. p. 187 – 188 °C. IR (neat, cm⁻¹) 1582, 1497, 1482, 1465, 1375, 1245, 764. ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, *J* = 8.3 Hz, 1H), 8.14 (d, *J* = 8.2 Hz, 1H), 7.80 (s, 1H), 7.75 (t, *J* = 7.7 Hz, 1H), 7.60 (t, *J* = 7.6 Hz, 1H), 7.44 (s, 1H), 6.11 (s, 2H), 2.98 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.62, 149.11, 147.51, 140.91, 132.55, 130.10, 126.48, 126.36, 125.03, 122.05, 119.42, 107.19, 101.67, 99.33, 23.04. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₁₅H₁₂NO₂: 238.0863; found: 238.0863.

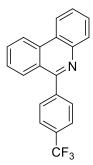

4-Methoxy-6-methylphenanthridine (2h) & 2-Methoxy-6-methylphenanthridine (2h'):² According to *General Procedure*, 2h and 2h' were obtained as a white solid (21.3 mg, 96% yield) from 1m. Reaction time: 0.75 h.

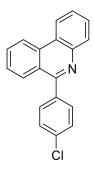
2h:¹H NMR (400 MHz, CDCl₃) δ 8.61 (d, *J* = 8.3 Hz, 1H), 8.24 (d, *J* = 8.2 Hz, 1H), 8.13 (d, *J* = 8.3 Hz, 1H), 7.86 – 7.80 (m, 1H), 7.73 – 7.67 (m, 1H), 7.56 (t, *J* = 8.1 Hz, 1H), 7.14 (d, *J* = 7.9 Hz, 1H), 4.12 (s, 3H), 3.11 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.92, 155.43, 134.62, 132.54, 130.46, 127.46, 126.60, 126.46, 126.06, 124.99, 122.88, 113.94, 108.13, 56.18, 23.90.

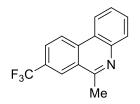

2h': ¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, *J* = 8.2 Hz, 1H), 8.21 (d, *J* = 8.2 Hz, 1H), 8.02 (d, *J* = 8.9 Hz, 1H), 7.89 (d, *J* = 2.7 Hz, 1H), 7.85 – 7.80 (m, 1H), 7.75 – 7.65 (m, 1H), 7.34 (dd, *J* = 8.9, 2.7 Hz, 1H), 4.01 (s, 3H), 3.01 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.97, 156.25, 132.18, 130.70, 130.13, 127.40, 126.60, 126.06, 124.76, 122.36, 118.29, 103.12, 55.66, 29.72,23.14.

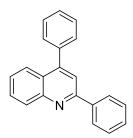

9-Fluoro-6-methylphenanthridine (2i):² According to *General Procedure*, 2i was obtained as a white solid (20.7 mg, 98% yield) from **1n**. Reaction time: 5 h. ¹H NMR (400 MHz, CDCl₃) δ 8.39 – 8.32 (m, 1H), 8.24 – 8.11 (m, 2H), 8.08 (d, *J* = 8.2 Hz, 1H), 7.74 – 7.69 (m, 1H), 7.59 (t, *J* = 7.6 Hz, 1H), 7.38 (td, *J* = 8.5, 2.7 Hz, 1H), 2.99 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.75 (d, *J* = 251.3 Hz), 158.17, 144.00, 134.98 (d, *J* = 9.3 Hz), 129.43, 129.32, 126.39, 123.35 (d, *J* = 4.0 Hz), 122.88, 122.13, 116.24 (d, *J* = 23.7 Hz), 107.44 (d, *J* = 22.1 Hz), 23.42. ¹⁹F NMR (377 MHz, CDCl₃) δ - 107.13.

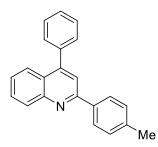

9-methoxy-6-methylphenanthridine (**2j**) According to *General Procedure*, **2j** was obtained as a white solid (21.8 mg, 98% yield) from **1t**. Reaction time: 0.5 h. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 8.1 Hz, 1H), 8.10 (d, J = 9.0 Hz, 1H), 8.07 (dd, J = 8.2, 1.0 Hz, 1H), 7.89 (d, J = 2.4 Hz, 1H), 7.69 (ddd, J = 8.3, 7.1, 1.4 Hz, 1H), 7.61 – 7.52 (m, 1H), 7.29 – 7.22 (m, 1H), 4.02 (s, 3H), 2.98 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.18, 158.31, 144.16, 134.68, 129.33, 128.74, 128.45, 125.84, 123.67, 121.97, 120.87, 117.30, 102.98, 55.54, 23.33. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₁₅H₁₃NO: 224.1070; found: 224.1067.

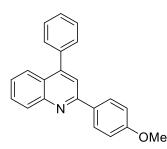

6-Ethylphenanthridine (**2k**):² According to *General Procedure*, **2j** was obtained as a white solid (19.2 mg, 93% yield) from **10**. Reaction time: 19 h. ¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, *J* = 8.3 Hz, 1H), 8.52 (dd, *J* = 8.2, 1.2 Hz, 1H), 8.25 (d, *J* = 7.9 Hz, 1H), 8.13 (dd, *J* = 8.2, 1.0 Hz, 1H), 7.83-7.79 (m, 1H), 7.72-7.65 (m, 2H), 7.63 – 7.58 (m, 1H), 3.40 (q, *J* = 7.6 Hz, 2H), 1.51 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.26, 143.79, 132.95, 130.29, 129.58, 128.59, 127.26, 126.30, 126.25, 125.04, 123.69, 122.52, 121.93, 29.43, 13.61.


6-Phenylphenanthridine (**2l**):² According to *General Procedure*, **2k** was obtained as a white solid (25.0 mg, 98% yield) from **1p**. Reaction time: 2 h. ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, *J* = 8.3 Hz, 1H), 8.59 (d, *J* = 8.1 Hz, 1H), 8.25 (d, *J* = 8.1 Hz, 1H), 8.09 (d, *J* = 8.2 Hz, 1H), 7.83 (t, *J* = 7.7 Hz, 1H), 7.78 – 7.48 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 161.30, 143.80, 139.80, 133.46, 130.60, 130.35, 129.78, 128.94, 128.89, 128.76, 128.47, 127.16, 126.98, 125.26, 123.78, 122.22, 121.99.

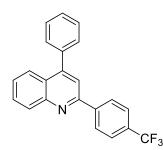

6-(4-Methoxyphenyl)phenanthridine (**2m**):² According to *General Procedure*, **21** was obtained as a white solid (27.1 mg, 95% yield) from **1q**. Reaction time: 5 h. ¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, J = 8.3 Hz, 1H), 8.61 (dd, J = 8.1, 0.9 Hz, 1H), 8.23 (dd, J = 8.1, 1.1 Hz, 1H), 8.16 (dd, J = 8.2, 0.5 Hz, 1H), 7.88 – 7.82 (m, 1H), 7.78 – 7.57 (m, 5H), 7.13 – 7.07 (m, 2H), 3.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.91, 160.15, 143.87, 133.54, 132.29, 131.20, 130.50, 130.24, 128.98, 128.82, 127.09, 126.76, 125.37, 123.64, 122.23, 121.94, 113.91, 55.48.


6-(4-(Trifluoromethyl)phenyl)phenanthridine (2n):² According to *General Procedure*, 2m was obtained as a white solid (29.2 mg, 90% yield) from 1r. Reaction time: 1.5 h. ¹H NMR (400 MHz, CDCl₃) δ 8.72 (d, J = 8.3 Hz, 1H), 8.63 (d, J = 8.1 Hz, 1H), 8.23 (dd, J = 8.1, 1.2 Hz, 1H), 8.01 (d, J = 8.2 Hz, 1H), 7.91 – 7.81 (m, 5H), 7.81 – 7.75 (m, 1H), 7.74 – 7.69 (m, 1H), 7.66 – 7.60 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.74, 143.66, 143.36, 133.52, 130.88, 130.84 (q, J = 32.5 Hz), 130.41, 130.18, 129.10, 128.34, 127.42, 125.48 (q, J = 3.8 Hz), 124.86, 124.19 (q, J = 272.2 Hz) 123.87, 122.43, 122.05. ¹⁹F NMR (377 MHz, CDCl₃) δ - 62.59.


6-(4-Chlorophenyl)phenanthridine (20):² According to *General Procedure*, **2n** was obtained as a white solid (26.1 mg, 90% yield) from **1s**. Reaction time: 18 h.¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, J = 8.3 Hz, 1H), 8.60 (dd, J = 8.1, 1.1 Hz, 1H), 8.22 (dd, J = 8.1, 1.2 Hz, 1H), 8.05 (d, J = 8.3 Hz, 1H), 7.85 (ddd, J = 8.3, 7.1, 1.2 Hz, 1H), 7.78 – 7.73 (m, 1H), 7.71 – 7.66 (m, 3H), 7.64 – 7.59 (m, 1H), 7.56 – 7.51 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.99, 143.72, 138.22, 134.92, 133.51, 131.18, 130.74, 130.35, 128.99, 128.71, 128.51, 127.30, 127.18, 125.01, 123.78, 122.36, 122.01.


6-methyl-8-(trifluoromethyl)phenanthridine(2p): According to *General Procedure*, 2p was obtained as a white solid (26.1 mg, 90% yield) from 1u. Reaction time: 0.5 h. ¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, J = 8.7 Hz, 1H), 8.49 (d, J = 8.1 Hz, 1H), 8.11 (dd, J = 8.2, 0.8 Hz, 1H), 8.11(s,1H), 7.99 (dd, J = 8.7, 1.5 Hz, 1H), 7.81 – 7.70 (m, 1H), 7.69 – 7.60 (m, 1H), 3.05 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.58, 144.36, 134.76, 129.85, 129.64, 129.02 (q, J = 32.9 Hz), 126.90, 126.27(q, J = 3.3 Hz), 125.18, 124.04 (q, J = 273.3 Hz), 123.93 (q, J = 4.2 Hz), 123.38, 122.74, 122.30, 23.31. ¹⁹F NMR (377 MHz, CDCl₃) δ - 62.11. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₁₅H₁₀F₃N: 262.0838; found: 262.0834.

2,4-Diphenylquinoline (4a):⁴ According to *General Procedure*, 4a was obtained as a white solid (25.7 mg, 91% yield) from **3a**. Reaction time: 4 h.¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.4 Hz, 1H), 8.20-8.17 (m, 2H), 7.90 (dd, J = 8.4, 0.9 Hz, 1H), 7.81 (s, 1H), 7.72 (ddd, J = 8.4, 6.8, 1.4 Hz, 1H), 7.58 – 7.42 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 156.95, 149.21, 148.85, 139.70, 138.44, 130.16, 129.61, 129.57, 129.39, 128.89, 128.64, 128.45, 127.64, 126.38, 125.81, 125.69, 119.42.

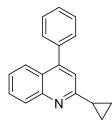


4-Phenyl-2-(p-tolyl)quinolone (4b):⁴ According to General Procedure, 4b was obtained as a white solid (25.5 mg, 86% yield) from **3b**. Reaction time: 24 h.¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 8.22 \text{ (d, } J = 8.5 \text{ Hz}, 1\text{H}), 8.09 \text{ (d, } J = 8.0 \text{ Hz}, 2\text{H}), 7.87 \text{ (d, } J = 8.0 \text{ Hz}, 2\text{H})$ 8.3 Hz, 1H), 7.78 (s, 1H), 7.70 (dd, J = 11.3, 3.9 Hz, 1H), 7.57 – 7.40 (m, 6H), 7.31 (d, J = 8.0 Hz, 2H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.88, 149.08, 148.82, 139.46, 138.51, 136.85, 130.04, 129.59, 129.48, 128.60, 128.39, 127.49, 126.16, 125.72, 125.64, 119.24, 21.37.

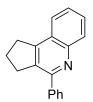
2-(4-Methoxyphenyl)-4-phenylquinoline (4c):⁵ According to General Procedure, 4c

was obtained as a white solid (28.3 mg, 91% yield) from **3c**. Reaction time: 3 h. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 8.4 Hz, 1H), 8.15 (d, J = 8.8 Hz, 2H), 7.86 (d, J = 8.4 Hz, 1H), 7.75 (s, 1H), 7.73 – 7.66 (m, 1H), 7.57 – 7.46 (m, 5H), 7.45 – 7.38 (m, 1H), 7.02 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.87, 156.46, 149.03, 148.85, 138.54, 132.24, 129.94, 129.60, 129.49, 128.95, 128.62, 128.40, 126.01, 125.66, 125.55, 118.94, 114.26, 55.42.

4-Phenyl-2-(4-(trifluoromethyl)phenyl)quinolone (**4d**):⁴ According to *General Procedure*, **4d** was obtained as a white solid (31.8 mg, 91% yield) from **3d**. Reaction time: 4 h.¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 8.2 Hz, 2H), 8.24 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.80 (s, 1H), 7.78 – 7.71 (m, 3H), 7.57 – 7.46 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 155.24, 149.65, 148.82, 142.96, 138.15, 131.12 (q, J = 32.4 Hz), 130.26, 129.87, 129.57, 128.71, 128.62, 127.88, 126.92, 126.06, 125.77 (q, J = 3.9 Hz), 124.23 (q, J = 272.0 Hz), 119.16. ¹⁹F NMR (377 MHz, CDCl₃) δ - 62.57.

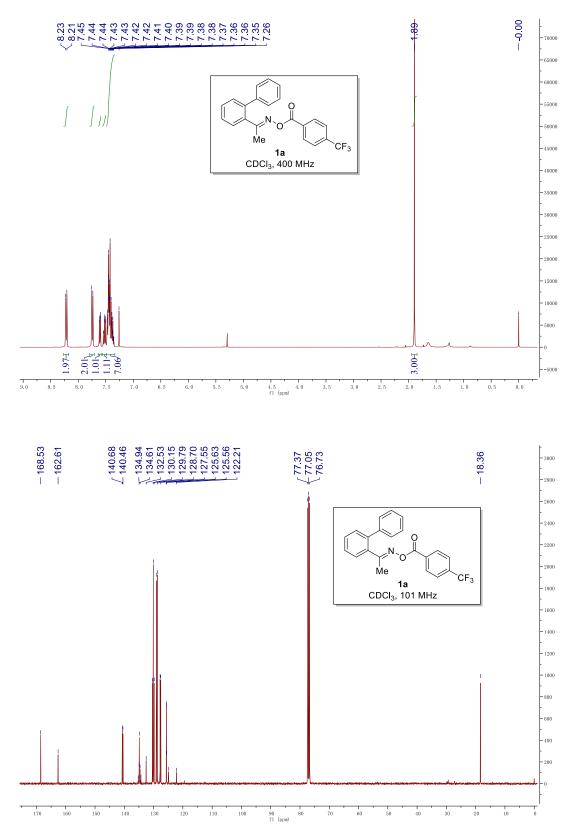


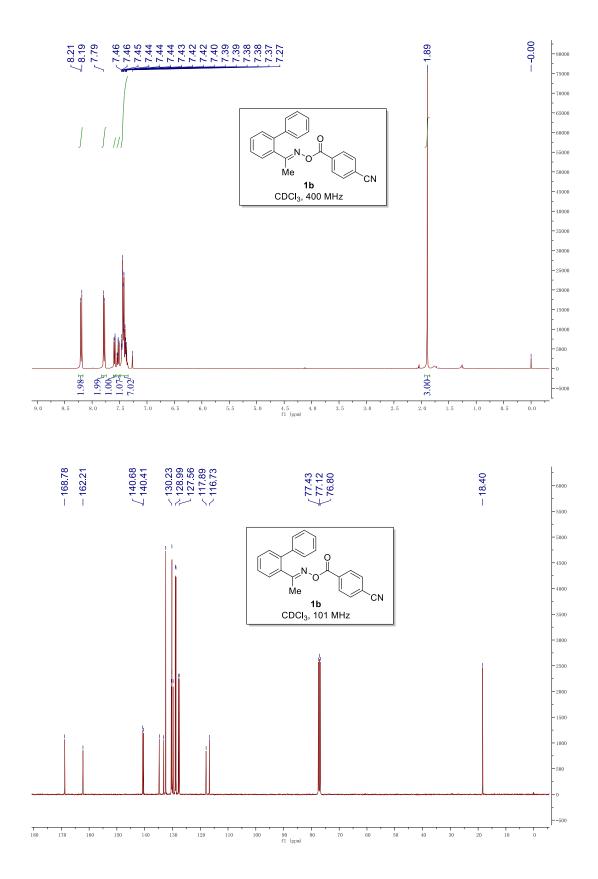
2-(4-Bromophenyl)-4-phenylquinoline (4e):⁴ According to *General Procedure*, 4e was obtained as a white solid (33.8 mg, 94% yield) from **3e**. Reaction time: 4 h.¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 8.4 Hz, 2H), 7.89 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 3.3 Hz, 1H), 7.74 – 7.69 (m, 1H), 7.62 (d, J = 8.4 Hz, 2H), 7.56 – 7.42 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 155.57, 149.45, 148.80,

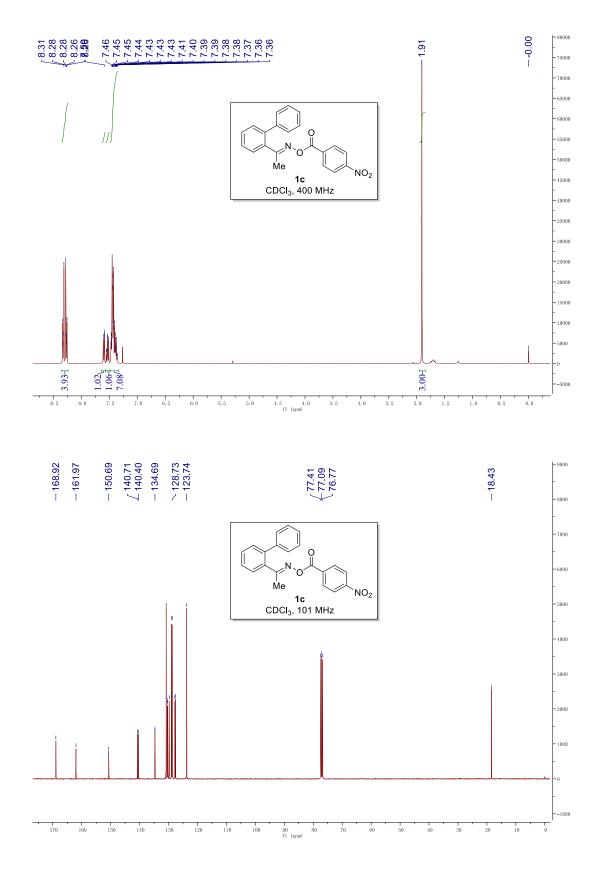

138.50, 138.27, 131.99, 130.12, 129.73, 129.57, 129.13, 128.66, 128.54, 126.59, 125.88, 125.72, 123.98, 118.85.

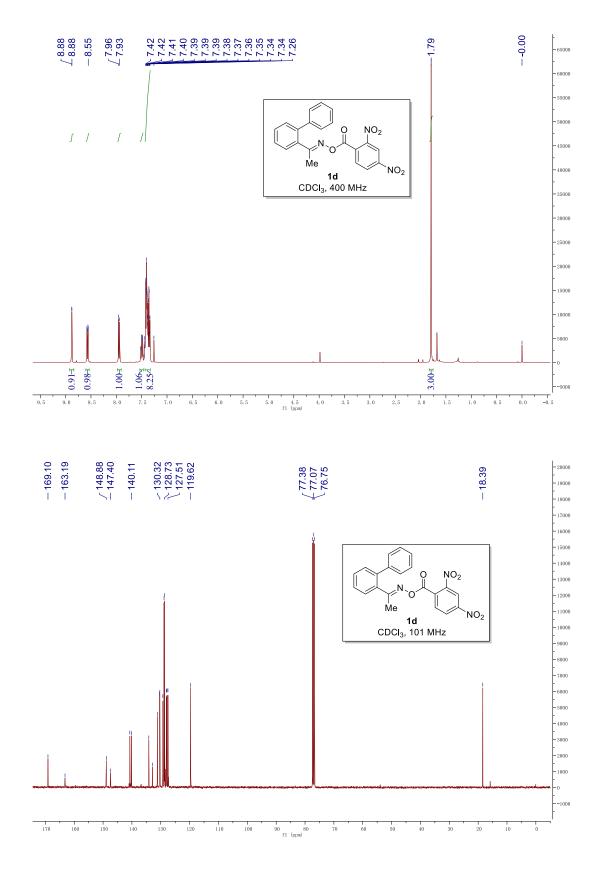
4-(2-Bromophenyl)-2-phenylquinoline (4f): According to *General Procedure*, **4f** was obtained as a white solid (33.0 mg, 92% yield) from **3f**. Reaction time: 3 h. Solid, m. p. 113-115 °C. IR (neat, cm⁻¹) 1601, 1546, 1465, 1405, 1355, 1023, 761. ¹H NMR (400 MHz, CDCl₃): δ 8.25 (d, J = 8.5 Hz, 1H), 8.20 (dd, J = 5.2, 3.4 Hz, 2H), 7.81 – 7.68 (m, 3H), 7.56 – 7.40 (m, 6H), 7.39 – 7.31 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.82, 148.55, 148.08, 139.54, 139.10, 133.10, 131.35, 130.12, 129.96, 129.72, 129.46, 128.89, 127.65, 127.40, 126.50, 125.73, 125.65, 123.25, 119.75. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₂₁H₁₅BrN: 360.0382; found: 360.0383.

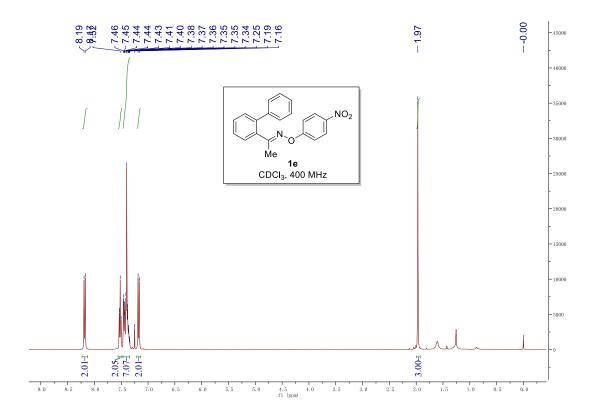
2-Cyclopropyl-4-phenylquinoline (4g): According to *General Procedure*, **4g** was obtained as an oil (23.9 mg, 98% yield) from **3g**. Reaction time: 12 h. Oil. IR (neat, cm⁻¹) 1592, 1554, 1491, 1443, 925, 758, 699. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.4 Hz, 1H), 7.80 (d, *J* = 8.3 Hz, 1H), 7.66 – 7.60 (m, 1H), 7.55 – 7.42 (m, 5H), 7.36 (dd, *J* = 11.2, 4.0 Hz, 1H), 7.09 (s, 1H), 2.31 – 2.20 (m, 1H), 1.23 – 1.04 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 162.91, 148.52, 148.19, 138.43, 129.53, 129.18, 129.06, 128.51, 128.26, 125.64, 125.36, 125.26, 119.60, 18.13, 10.25. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₁₈H₁₆N: 246.1277; found: 246.1277.

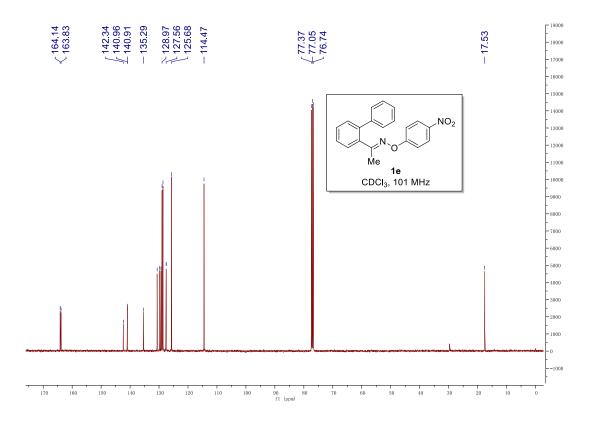


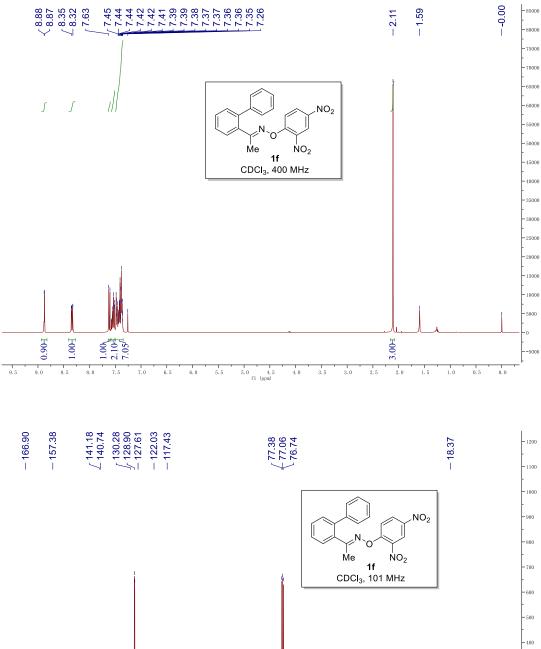

4-Phenyl-2,3-dihydro-1H-cyclopenta[**c**]**quinolone** (**4h**): According to *General Procedure*, **4h** was obtained as an oil (17.1 mg, 70% yield) from **3h**. Reaction time: 24 h. Oil. IR (neat, cm⁻¹) 1577, 1505, 1493, 1358, 1237, 785, 696. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.5 Hz, 1H), 7.85-7.81 (m, 3H), 7.70 – 7.63 (m, 1H), 7.56 – 7.40 (m, 4H), 3.33 (t, *J* = 7.6 Hz, 2H), 3.25 (t, *J* = 7.3 Hz, 2H), 2.31 – 2.22 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.12, 151.36, 147.39, 140.58, 135.05, 129.90, 128.76, 128.62, 128.55, 128.38, 126.13, 125.30, 124.13, 33.70, 31.29, 25.05. HRMS (DART Positive) ([M+H]⁺) Calcd. For C₁₈H₁₆N: 246.1277; found: 246.1277.

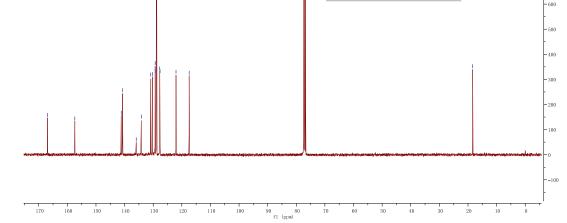

11. Reference.

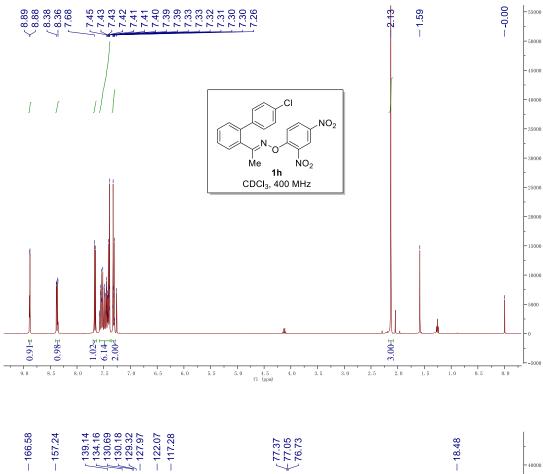

- Jacob, D.; Samuel, G. B.; Stephanie, E.; Robert, A. W. D.; Daniele, L. Angew. Chem. Int. Ed. 2015, 54, 14017.
- (2) Jiang, H.; An, X. D.; Tong, K.; Zheng, T. Y.; Zhang, Y.; Yu, S. Y. Angew. Chem. Int. Ed. 2015, 54, 4055.
- (3) Park, J.; Yun, J.; Kim, J.; Jang, D. J.; Park, C. H.; Lee, K. Synth. Commun. 2014, 44(13), 1924.
- (4) Zhang, Z. H.; Du, H. F. Org. Lett. 2015, 17, 6266.
- (5) André, L. S.; Alisson, R. R.; Gilson, Z. Eur. J. Org. Chem. 2015, 5640.

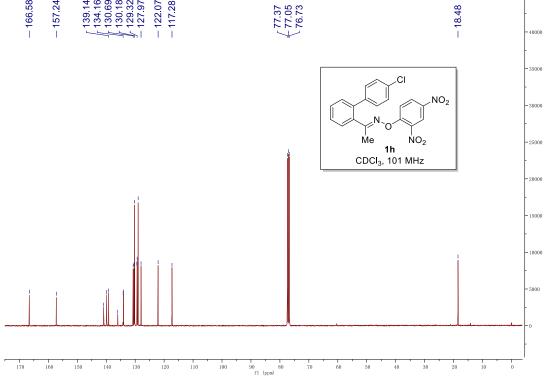

12. Copies of NMR spectra.

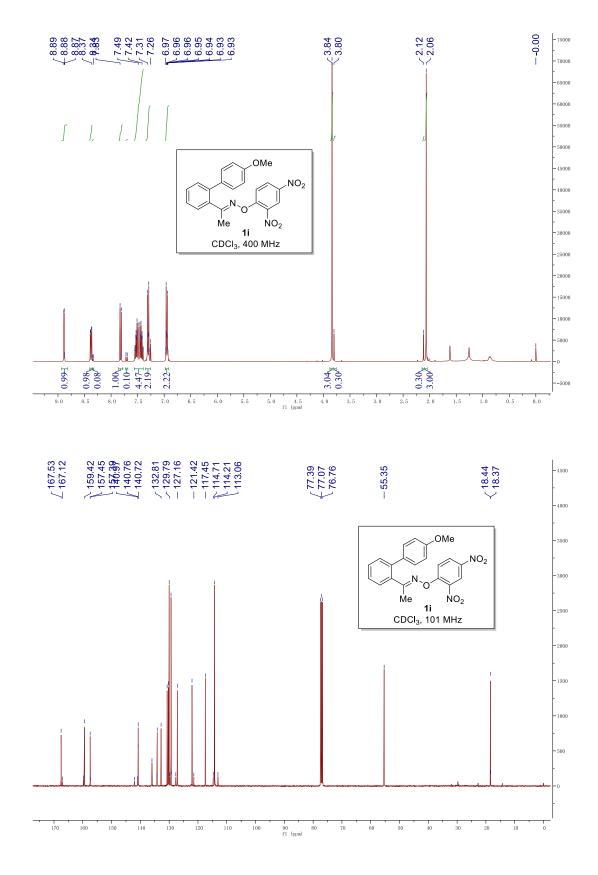


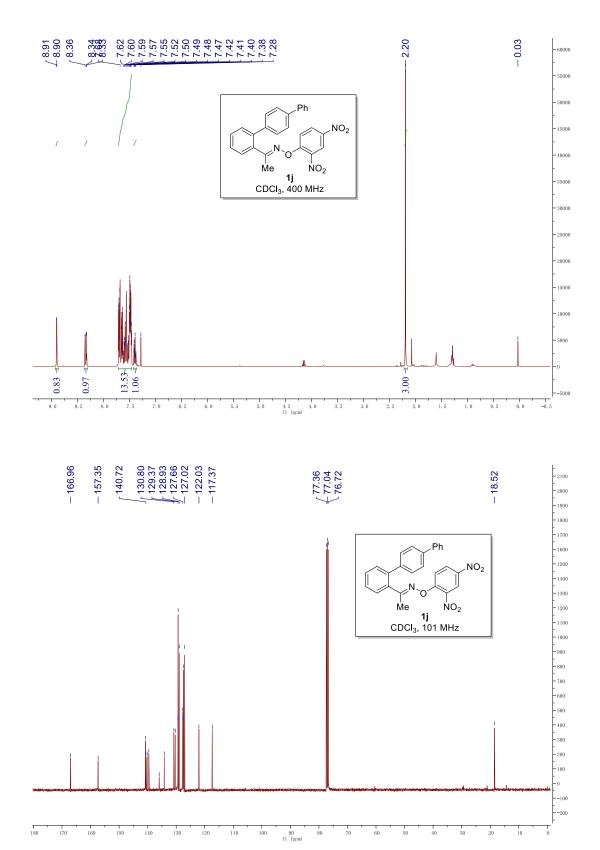


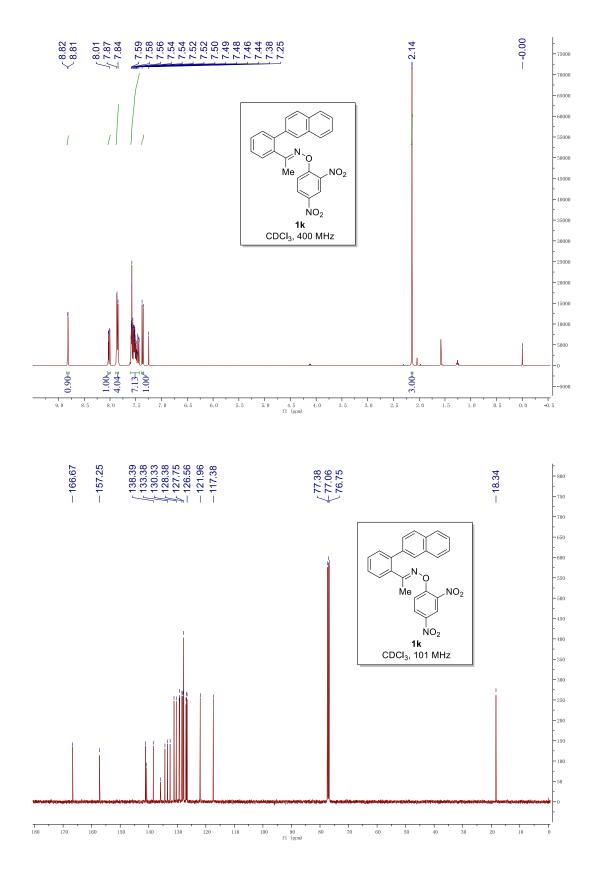


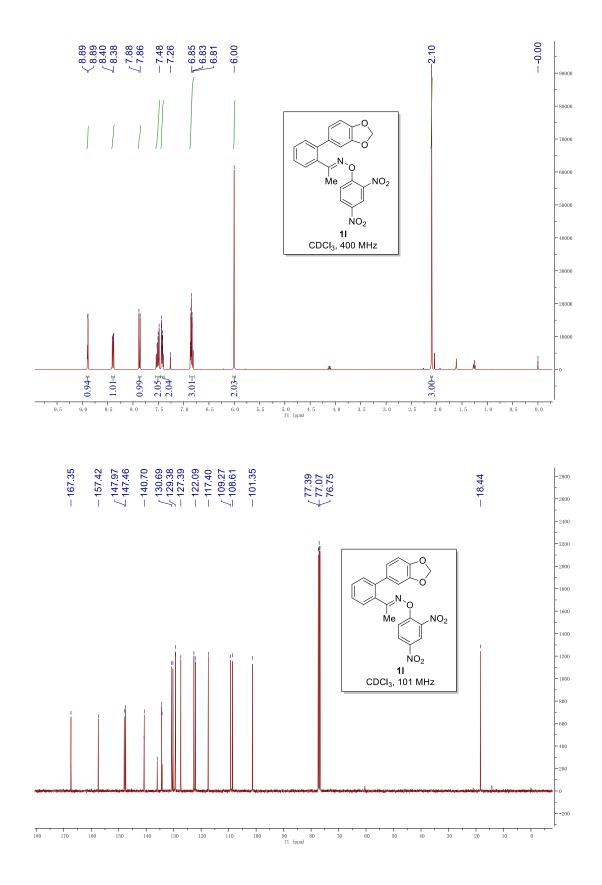


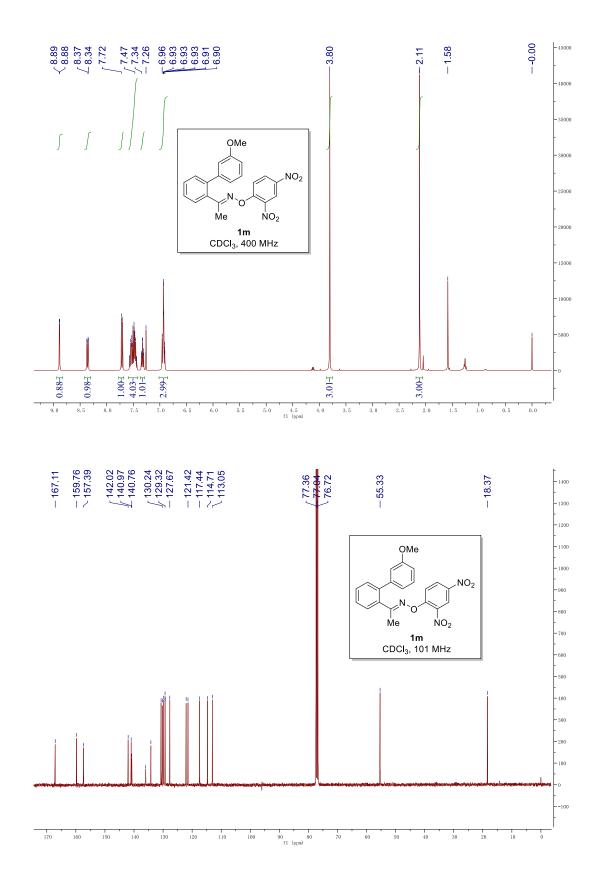

S40

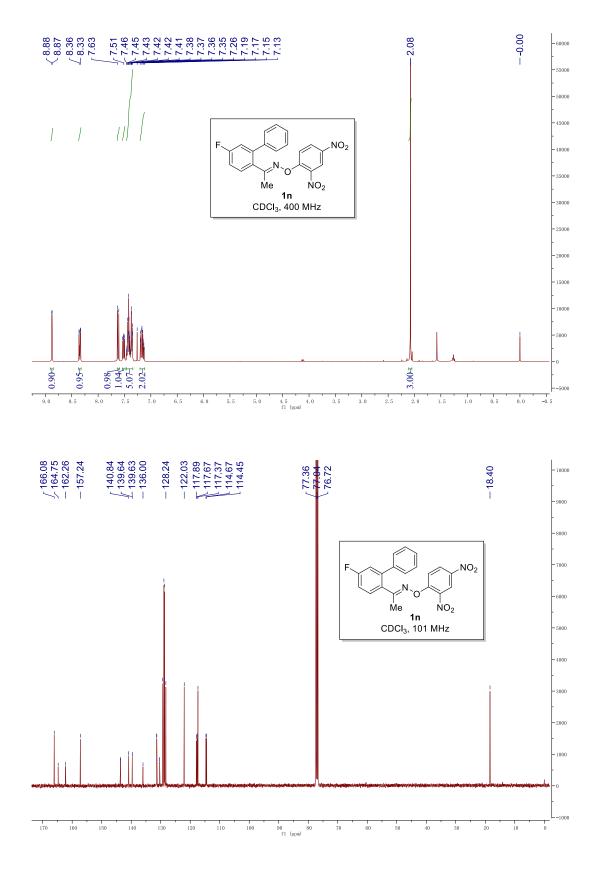


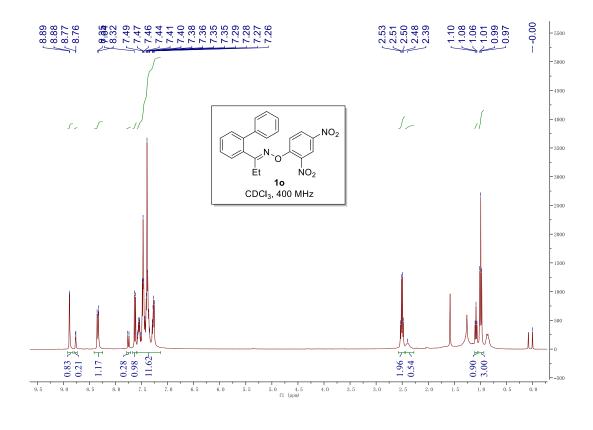


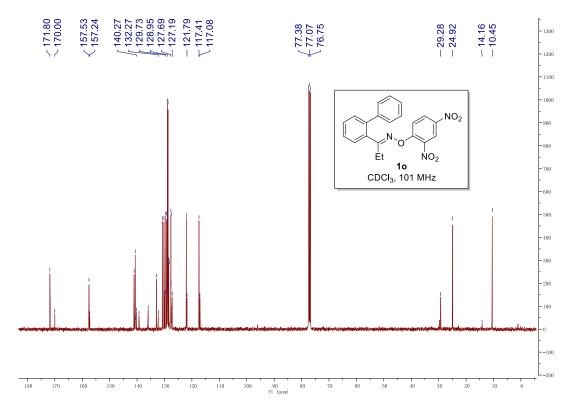


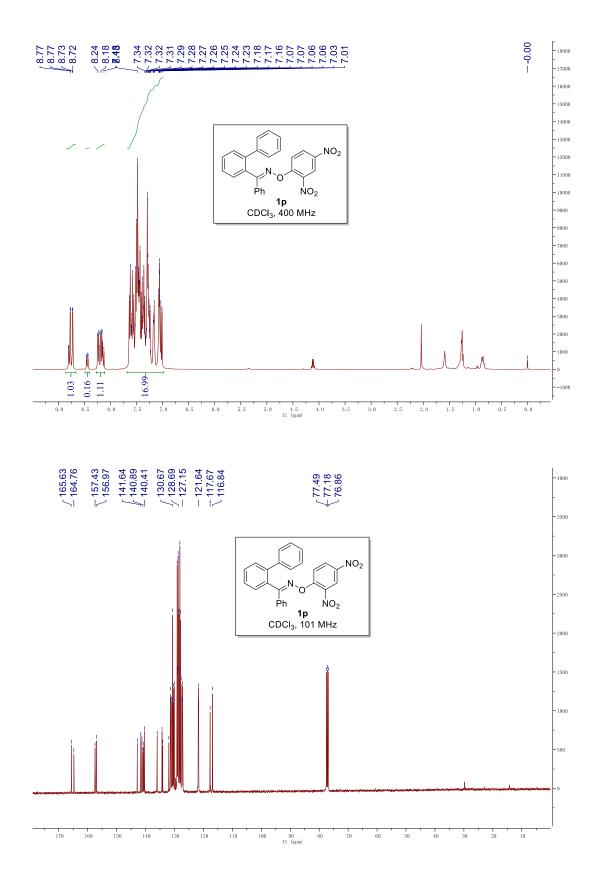


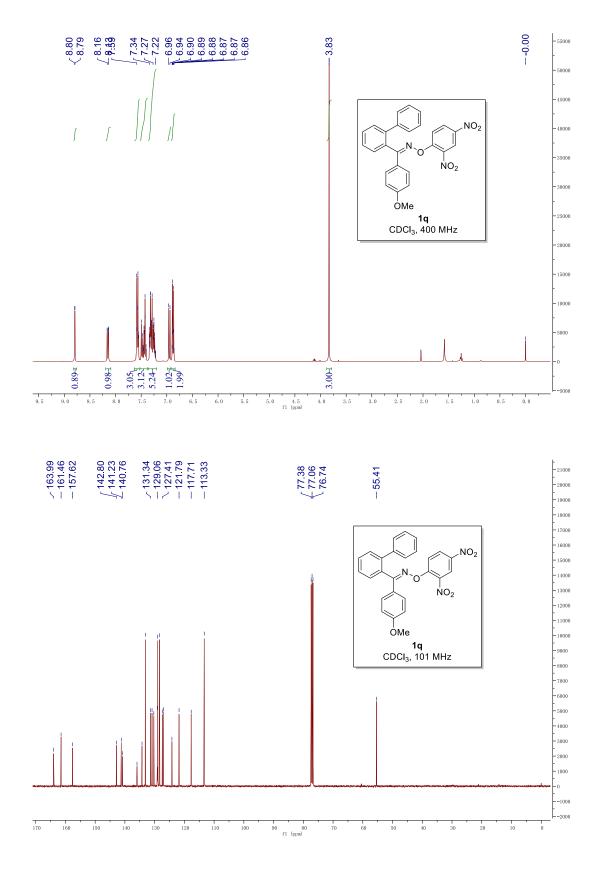

S44

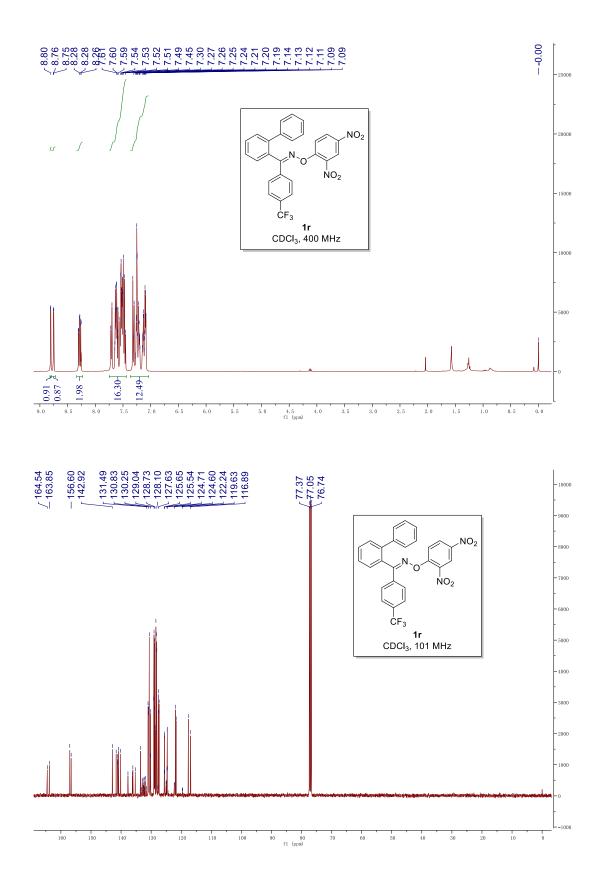


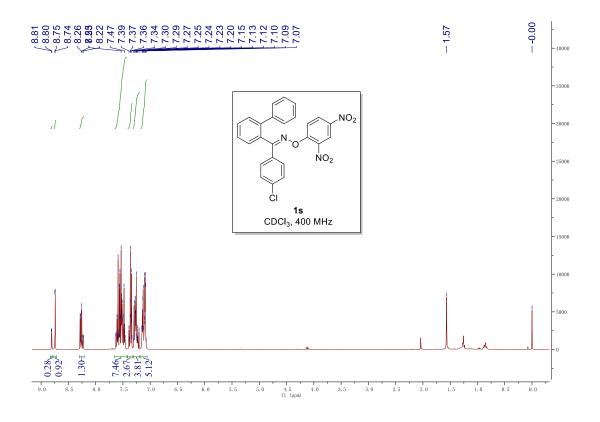

S45

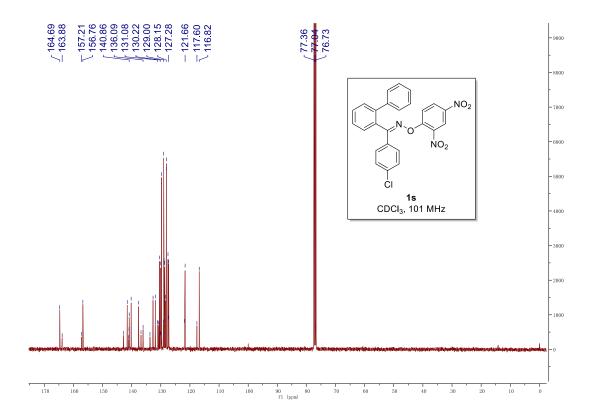


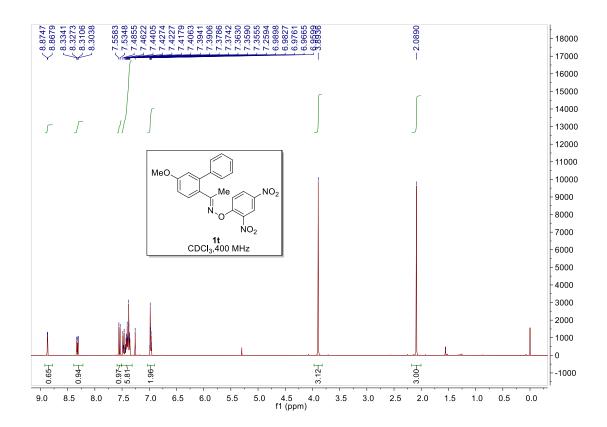


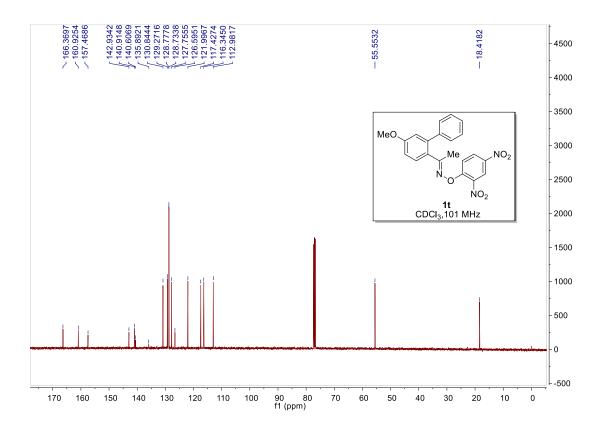


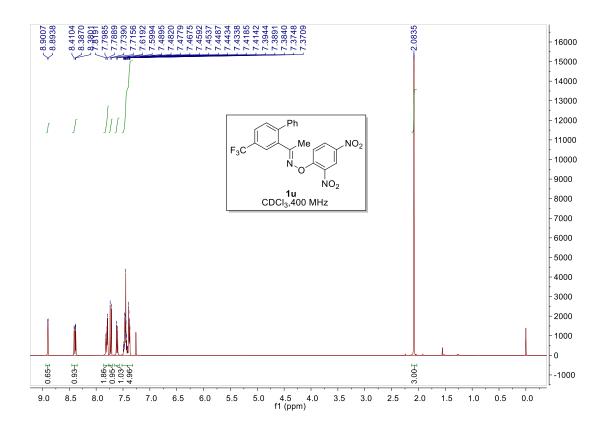


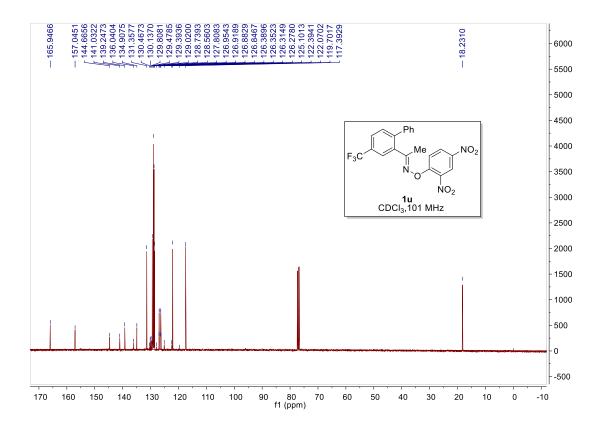


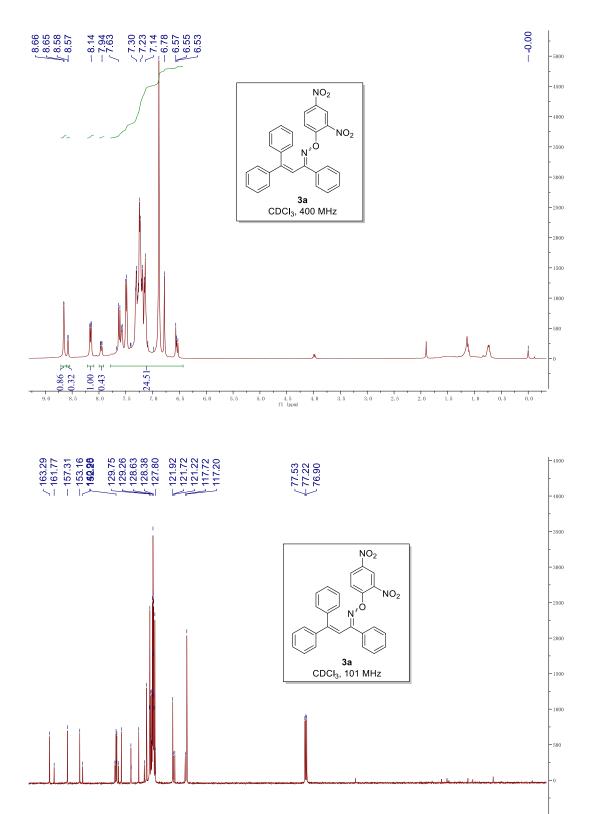


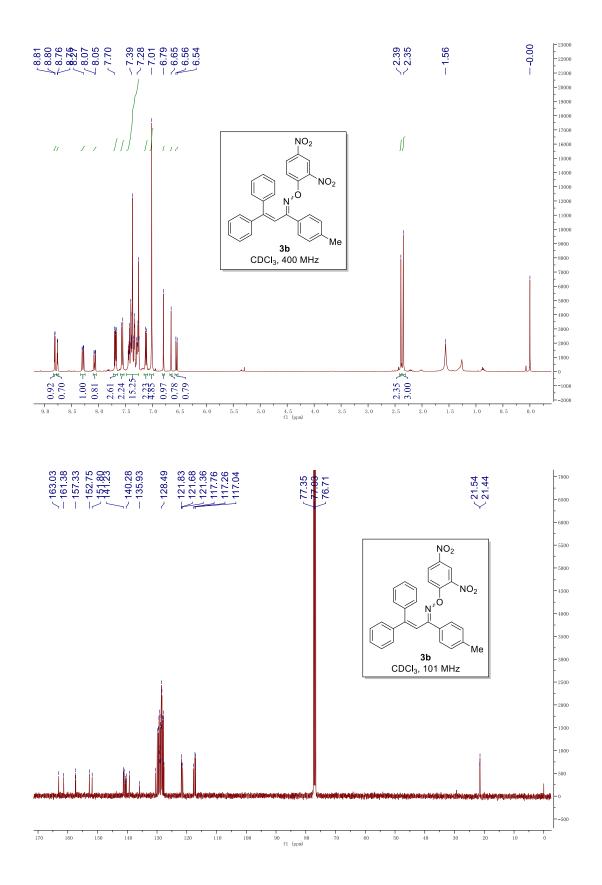


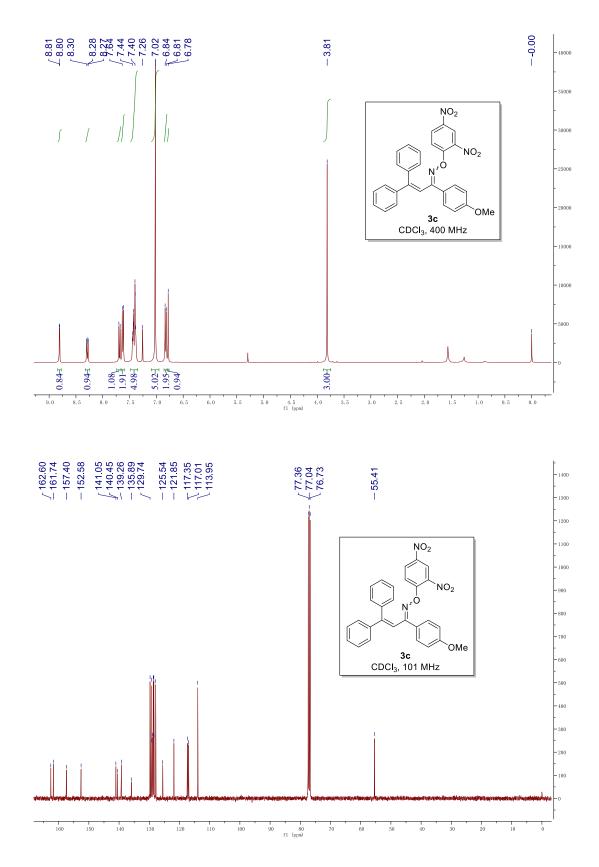


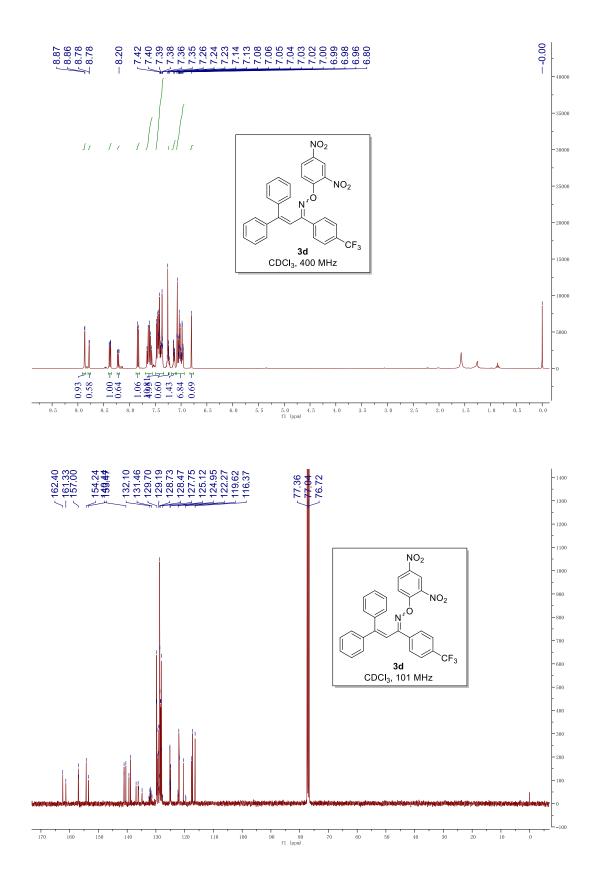


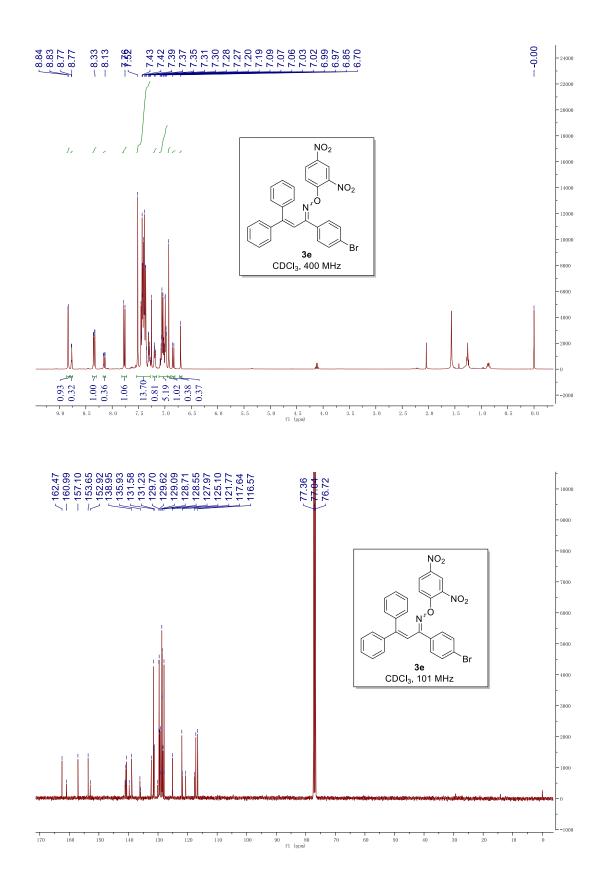


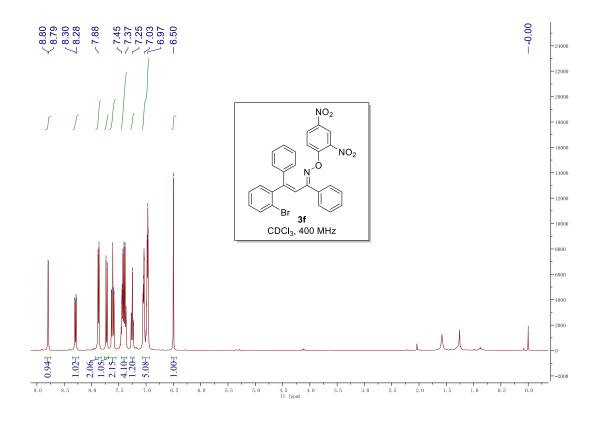


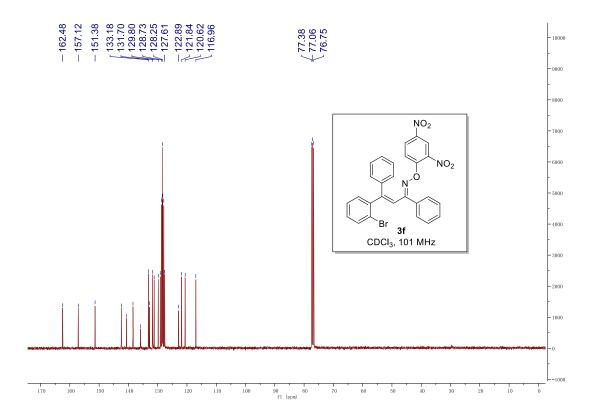


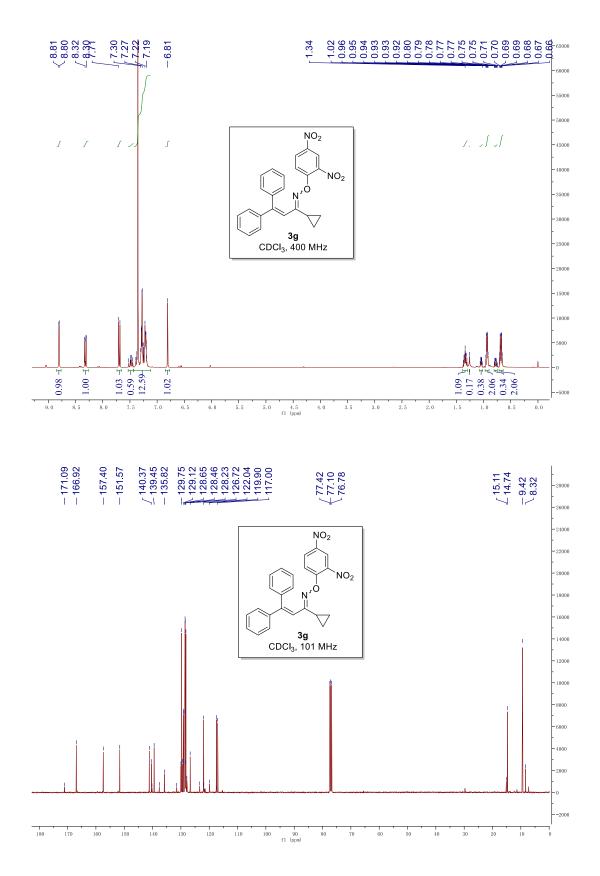


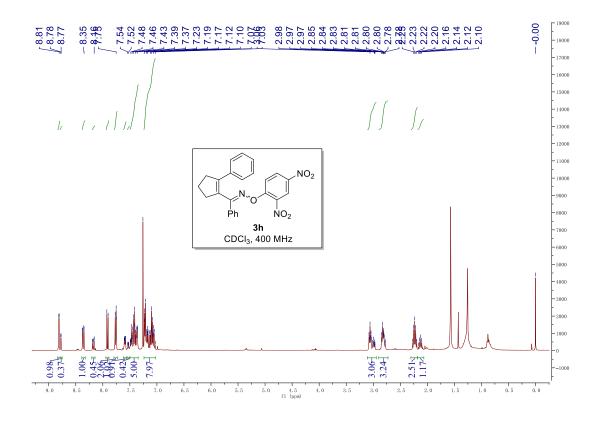


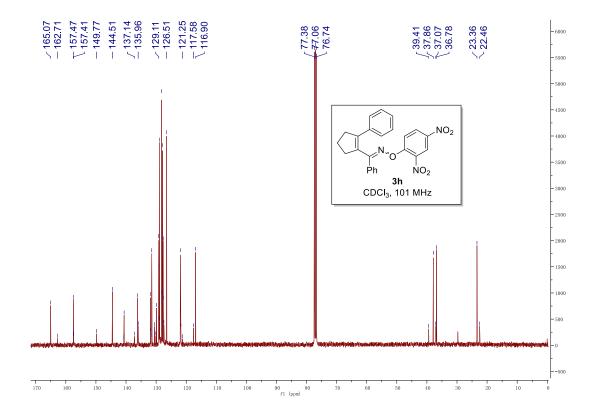


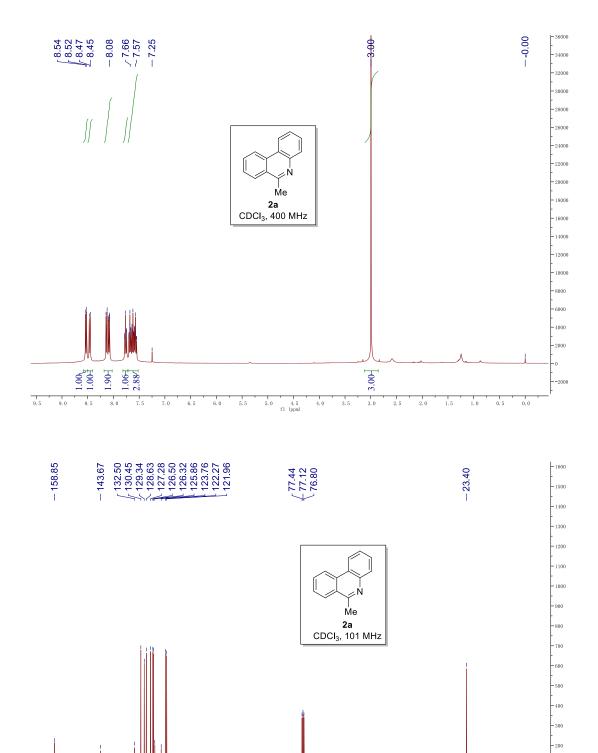

90 80 fl (ppm) 170 50 30

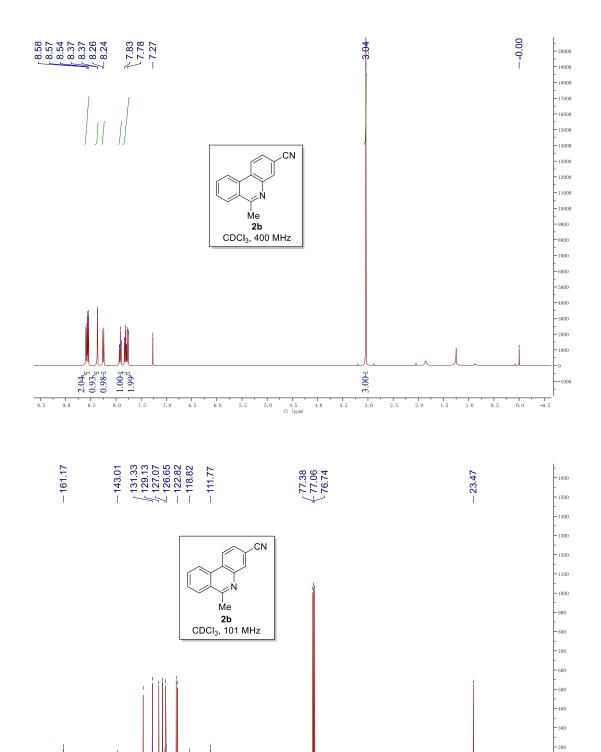




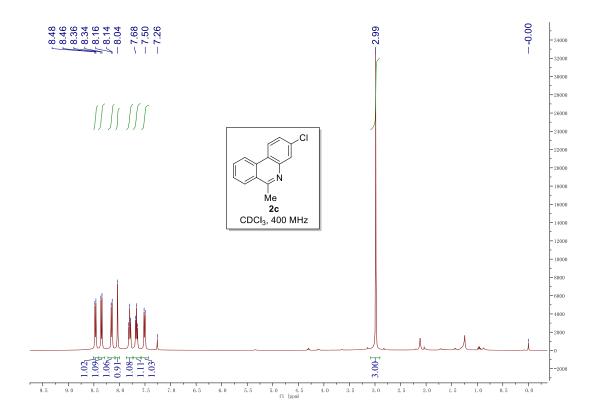


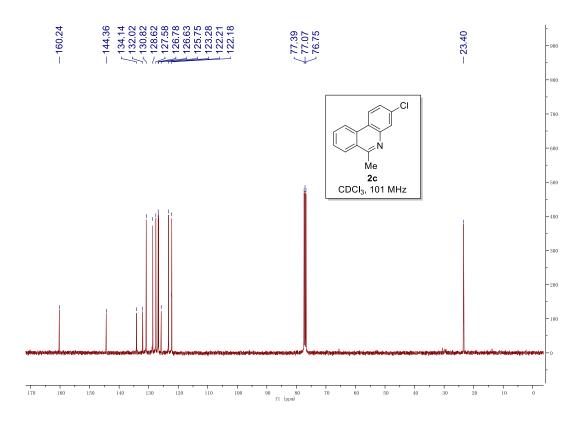


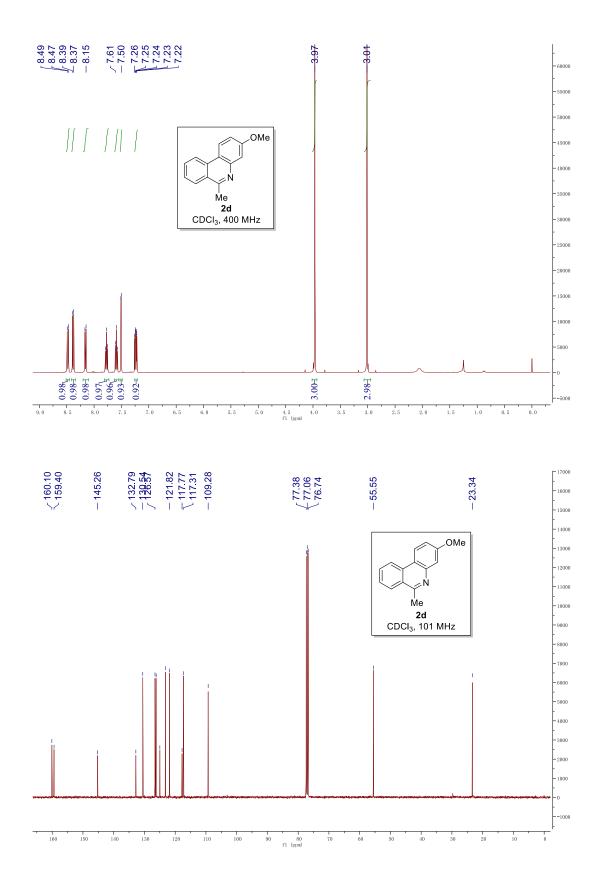


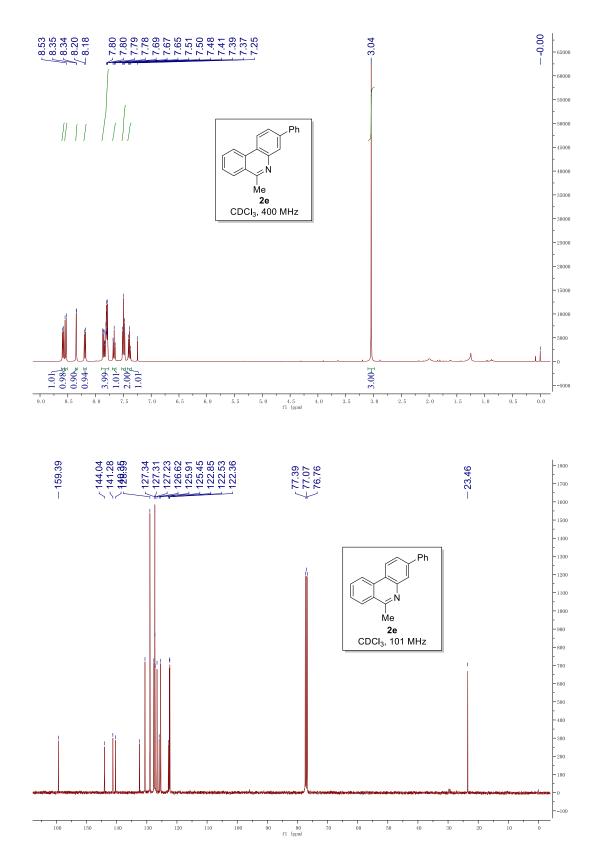


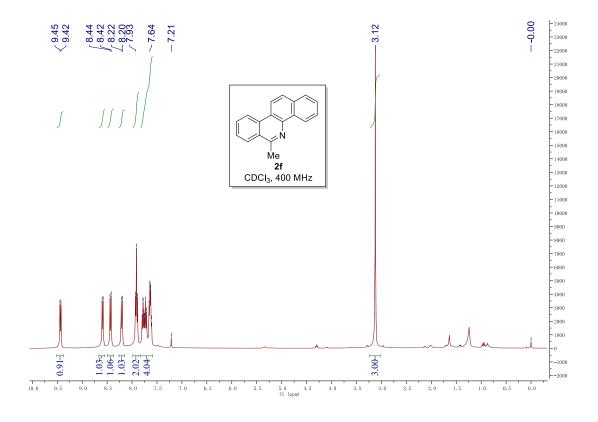
fl (ppm)

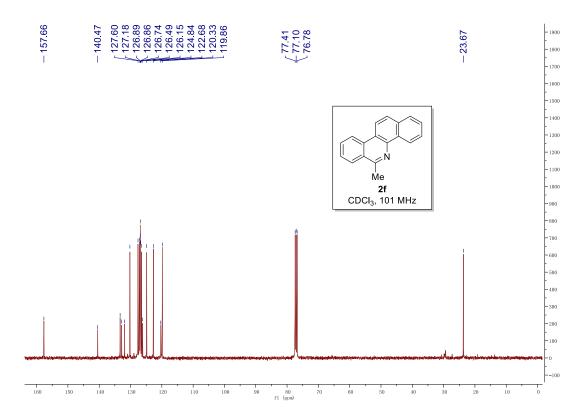

- 100 - 0 - -100

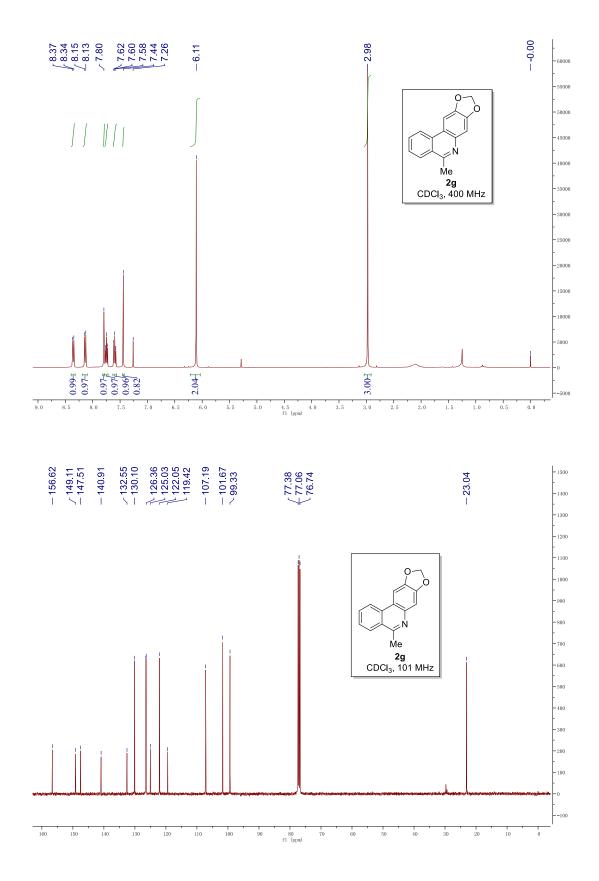


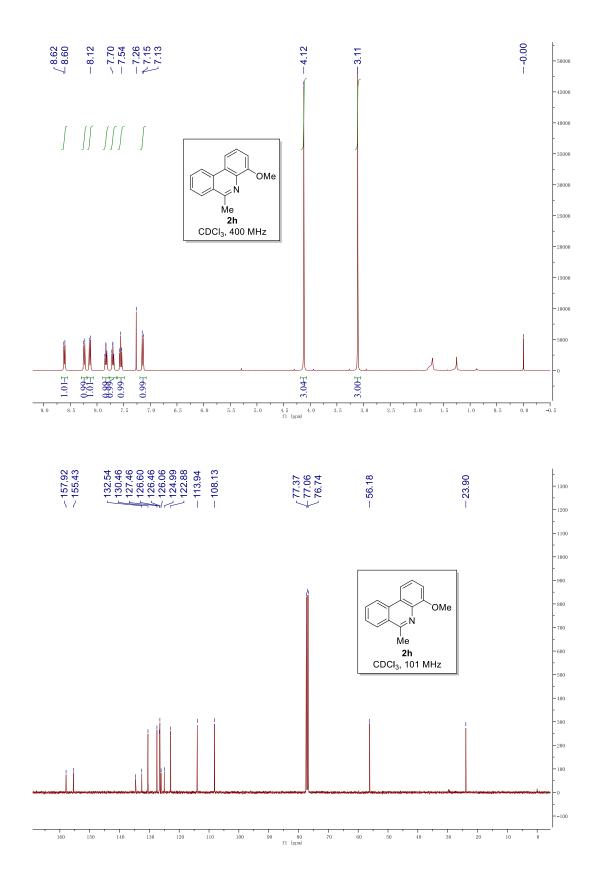

90 80 fl (ppm) 160 150

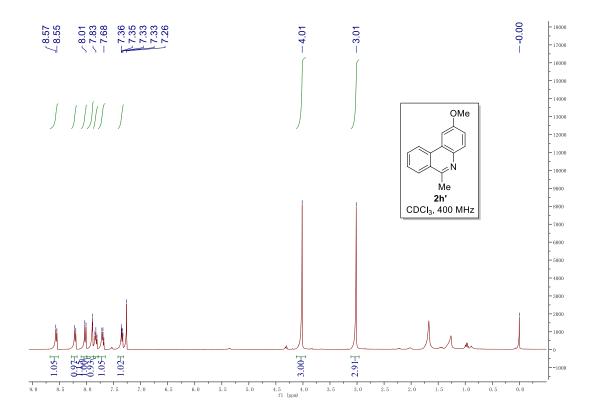

120 110 100

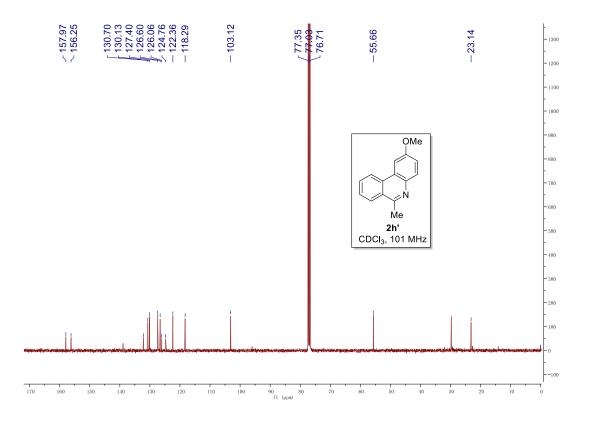

-100

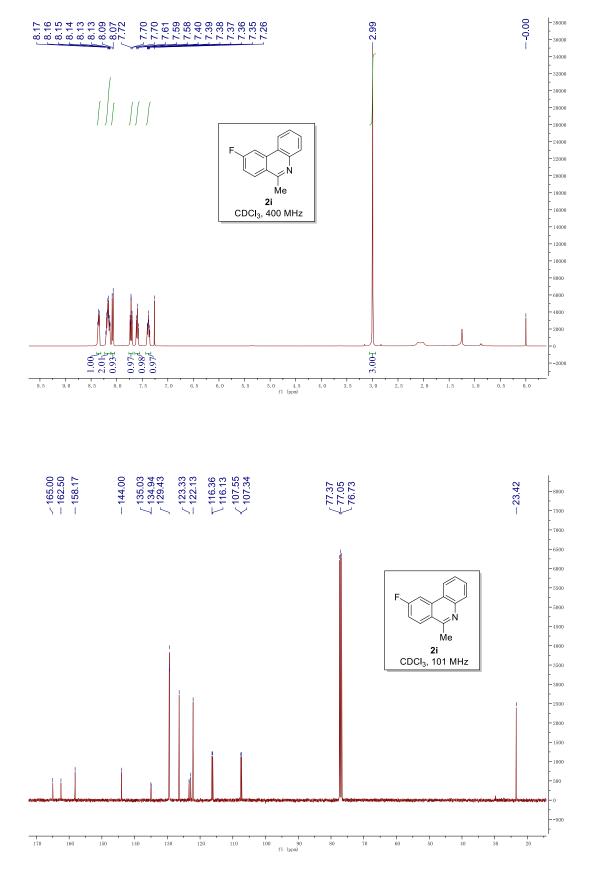


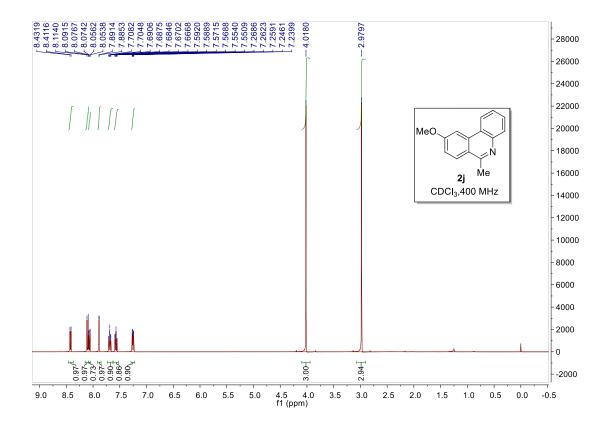


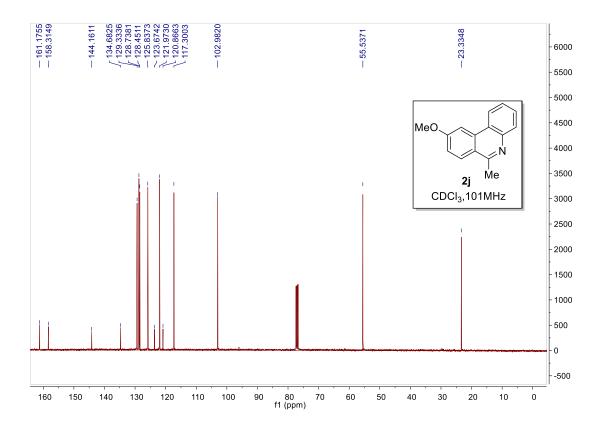


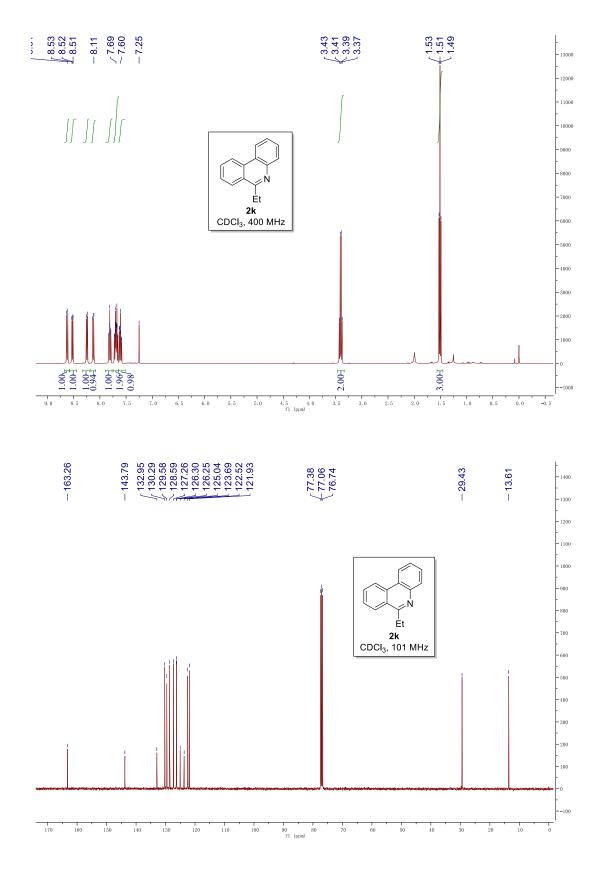


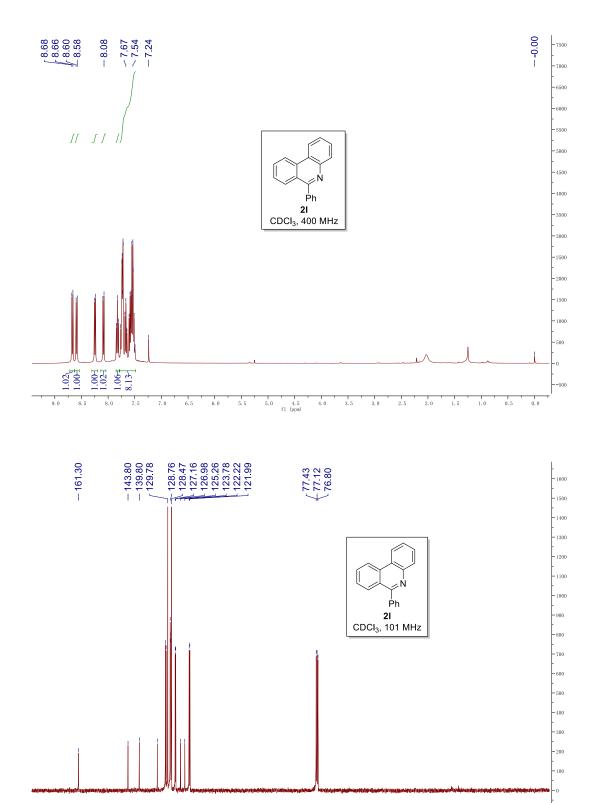


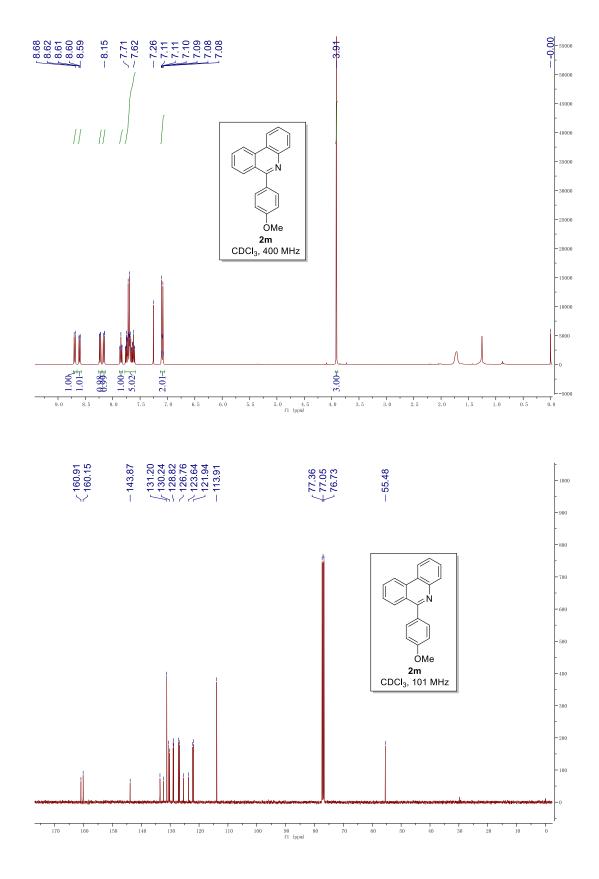


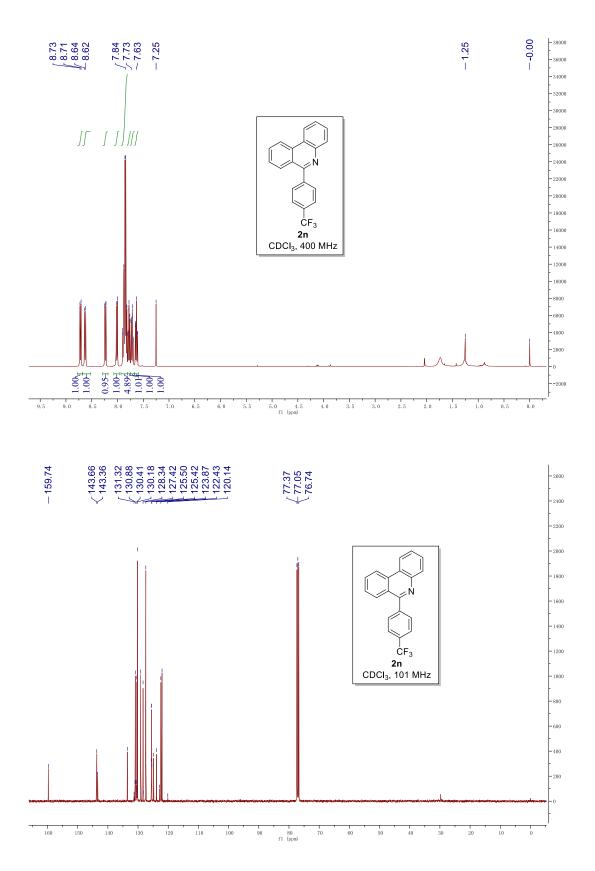


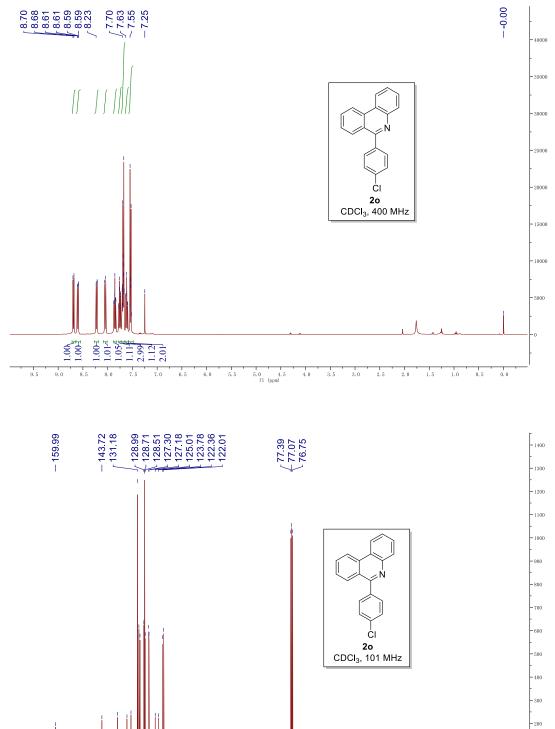


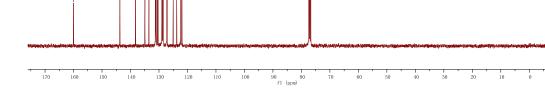




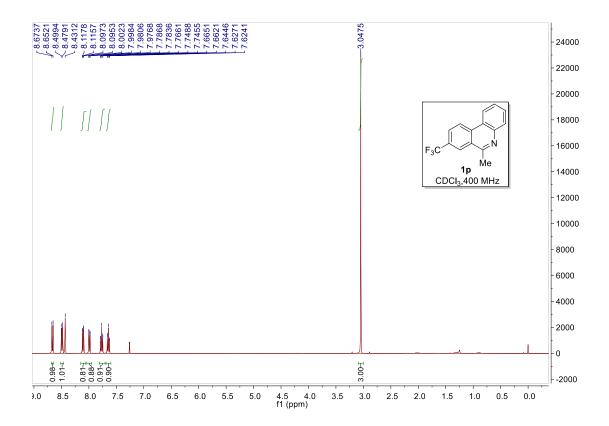


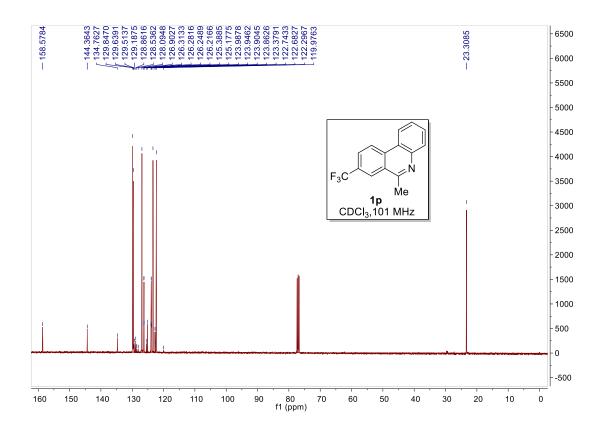


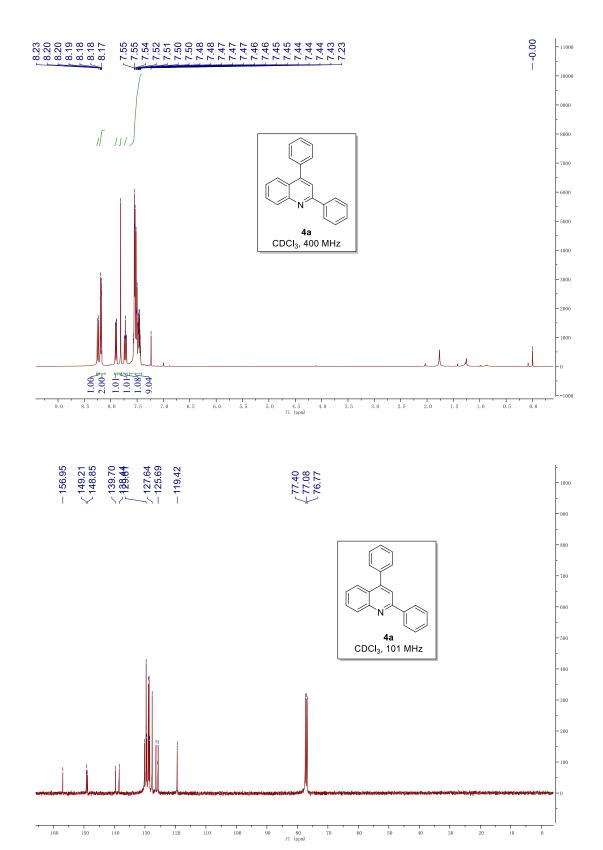


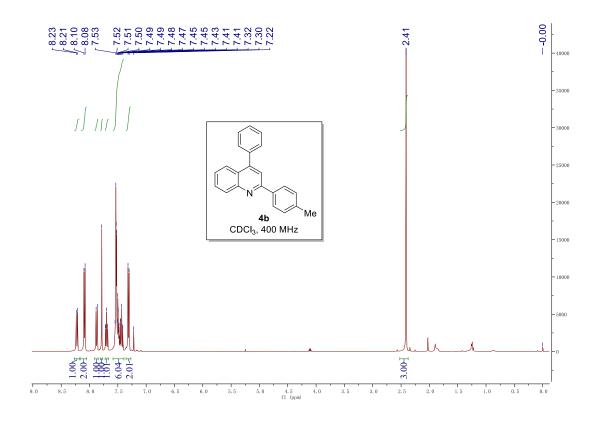


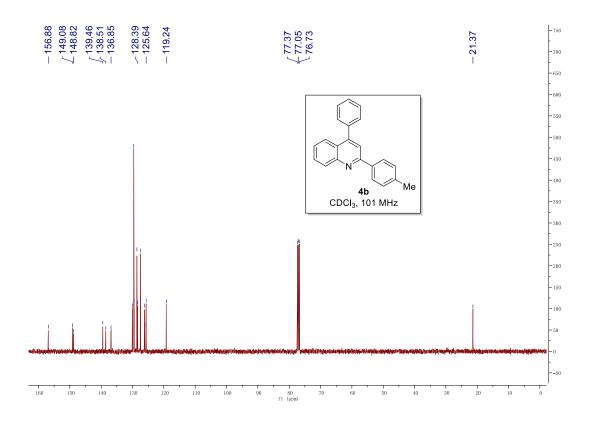
90 80 fl (ppm) -100

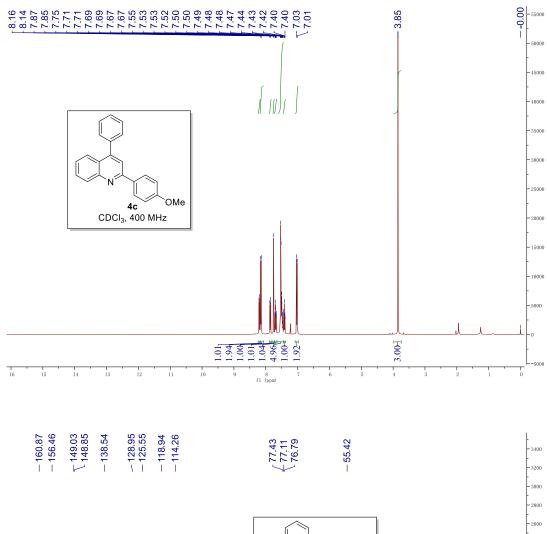


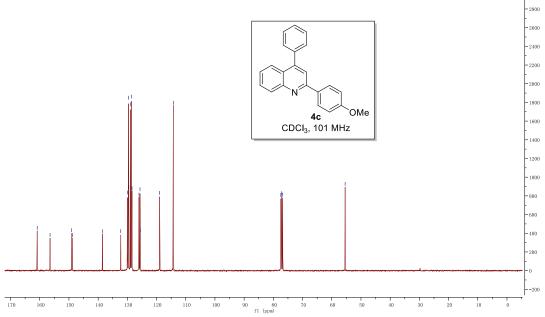


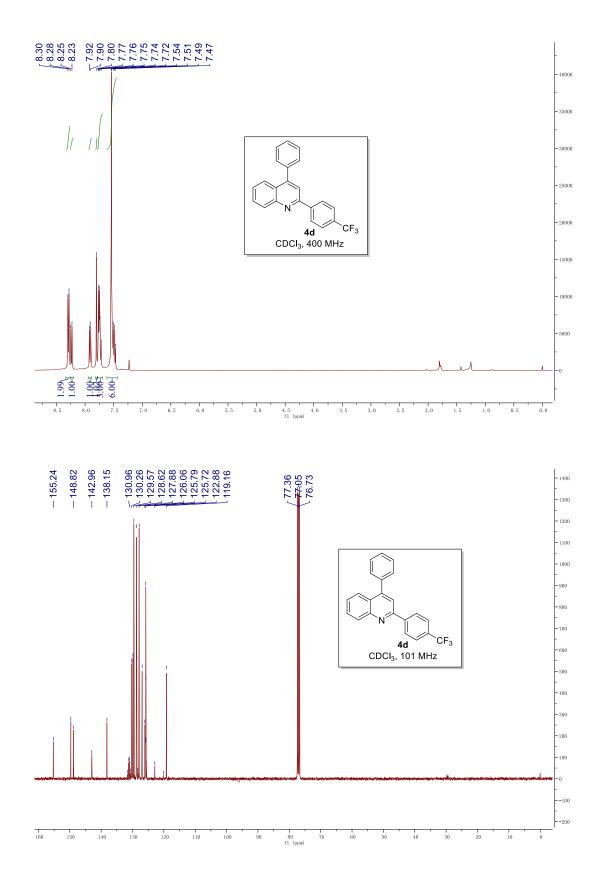



100








S82

