Supporting Information

Radical Rearrangement of \(N\)-Sulfonyl-\(N\)-Aryl Propynamides: Proceeding with Homolytic \(N\)-SO\(_2\) Bond Cleavage and 6-\(endo\)-\(dig\) Cyclization toward 3-Sulfonyl-2(1\(H\))-Quinolinones

Bingbing Wang, Shengnan Jin, Song Sun and Jiang Cheng*

School of Petrochemical Engineering, and Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.

Email: jiangcheng@cczu.edu.cn

Contents

1. General experimental details .. S2
2. The reaction of \(N\)-Sulfonyl-\(N\)-Aryl propynamides and DTBP S3
3. Mechanistic studies .. S4
4. Characterization data for the products ... S12
5. Copies of \(^1\)H NMR and \(^{13}\)C NMR spectra of 2a-2t ... S20

Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers.
This journal is © the Partner Organisations 2017
1. General experimental details

All of the manipulations were performed under N$_2$ atmosphere, using standard Schlenk techniques. Chemicals were used as received without special purification unless stated otherwise. N-Sulfonyl-N-aryl propynamides 1a-1t were prepared according to the published procedure.1,2 1H and 13C NMR were recorded at ambient temperature on a 400 or 300 MHz NMR spectrometer (100 or 75 MHz for 13C NMR). NMR experiments are reported in δ units, parts per million (ppm), and were referenced to CDCl$_3$ (7.26 or 77.16 ppm) or DMSO-d$_6$ (2.54 or 40.03 ppm) as the internal standard. NMR analysis was carried out at 298 K unless noted otherwise. HRMS was obtained on an ESI-APCI-LC-MS/MS spectrometer.

General procedure:

N-Sulfonyl-N-aryl propynamides (0.1 mmol), DTBP (0.3 mmol, 44 mg) and (CH$_2$OH)$_2$ (2.0 mL) was added into a 20 mL of Schlenk tube equipped with a Teflon cap. The reaction vessel was evacuated to about -0.1 MPa (last 30 seconds per time) and backfilled with N$_2$ (1 atm.) in three times. The sealed Schlenk tube was stirred at 115 °C for the desired time. After the reaction mixture was cooled to room temperature, saturated brine water (3.0 mL) was added to terminate the reaction. The reaction mixture was diluted with EtOAc and washed with saturated brine water. The organic layer was dried over anhydrous Na$_2$SO$_4$ and concentrated in vacuum. The residue was purified by flash column chromatography on silica gel with ethyl acetate-dichloromethane as eluent to give the desired product.
2. The reaction of *N*-sulfonyl-*N*-aryl propynamides and DTBP

\[
\begin{array}{c}
\text{Ph} \quad \text{O} \\
\text{N} \\
\text{Ts}
\end{array} \quad \xrightarrow{\text{DTBP (3.0 equiv)}} \quad \begin{array}{c}
\text{Ph} \\
\text{O} \\
\text{Ts}
\end{array}
\]

N-Sulfonyl-*N*-aryl propynamides (0.1 mmol), DTBP (0.3 mmol, 44 mg) and (CH\(_2\)OH\(_2\)) (2.0 mL) was added into a 20 mL Schlenk tube equipped with a Teflon cap. The reaction vessel was evacuated to about -0.1 MPa (last 30 seconds per time) and backfilled with N\(_2\) (1 atm.) in three times. The sealed Schlenk tube was stirred at 115 °C for the desired time. After the reaction mixture was cooled to room temperature, saturated brine water (3.0 mL) was added to terminate the reaction. The reaction mixture was diluted with EtOAc and washed with saturated brine water. The organic layer was dried over anhydrous Na\(_2\)SO\(_4\) and concentrated in vacuum. The residue was purified by flash column chromatography on silica gel with ethyl acetate-dichloromethane (1:3) as eluent to give the desired product *2a* in 83% yield.
3. Mechanistic studies

3.1 The cross experiment

\[
\text{Ar}^1 = \text{4-FC}_{6}\text{H}_{4}^+ \\
\text{Ar}^2 = \text{4-MeOC}_{6}\text{H}_{4}^+ \\
\text{N}-\text{Sulfonyl-N-aryl propynamides 1i (0.1 mmol, 39 mg) and 1k (0.1 mmol, 39 mg), DTBP (0.6 mmol, 88 mg) and (CH}_2\text{OH})_2 (2.0 mL) was added into a 20 mL Schlenk tube equipped with a Teflon cap. The reaction vessel was evacuated to about -0.1 MPa (last 30 seconds per time) and backfilled with N}_2 (1 atm) in three times. The sealed Schlenk tube was stirred at 115 °C for the desired time. After the reaction mixture was cooled to room temperature, saturated brine water (3.0 mL) was added to terminate the reaction. The reaction mixture was diluted with EtOAc and washed with saturated brine water. The organic layer was dried over anhydrous Na}_2\text{SO}_4 and concentrated in vacuum. The residue was purified by flash column chromatography on silica gel with ethyl acetate-dichloromethane (1:3) as eluent to give the desired product. Product 4 (14.3 mg) and 5 (15.6 mg) was isolated, along with product 6 (25.8 mg) as one mixture. The }^1\text{HNMR and LC-MS was tested as follows.}
Figure 1. The 1H NMR spectrum of product 4 after the cross reaction of 1i and 1k.

Figure 2. The LC-MS spectrum of product 4 after the cross reaction of 1i and 1k.
Figure 3. The 1H NMR spectrum of product 5 after the cross reaction of 1i and 1k.

Figure 4. The LC-MS spectrum of product 5 after the cross reaction of 1i and 1k.
Figure 5. The 1H NMR spectrum of product 6 after the cross reaction of 1i and 1k.

Figure 6. The LC-MS spectrum of product 6 after the cross reaction of 1i and 1k.
3.2 The control experimentals

\[
\begin{align*}
\text{Ph} & - & \text{Ts} & & \text{N} & & \text{O} \\
\text{Ph} & - & \text{Ts} & & \text{N} & & \text{O} \\
\end{align*}
\]

\[
\text{DTBP (3.0 equiv)} \quad \text{(CH}_2\text{OH)}_2, \text{N}_2, 115 \, ^\circ \text{C}, 24 \text{ h} \quad \text{TEMPO/BHT/Galvinoxyl (3.0 equiv)}
\]

\[
\begin{align*}
\text{Ph} & - & \text{Ts} & & \text{N} & & \text{O} \\
\text{Ph} & - & \text{Ts} & & \text{N} & & \text{O} \\
\end{align*}
\]

\[\text{no reaction}\]

\[N\text{-Sulfonyl-}N\text{-aryl propynamides (0.1 mmol), DTBP (0.3 mmol, 44 mg), TEMPO (0.3 mmol, 47 mg) or BHT (0.3 mmol, 66 mg) or galvinoxyl (0.3 mmol, 126 mg) and (CH}_2\text{OH)}_2 (2.0 mL) was added into a 20 mL Schlenk tube equipped with a Teflon cap. The reaction vessel was evacuated to about -0.1 MPa (last 30 seconds per time) and backfilled with N}_2 (1 atm.) in three times. The sealed Schlenk tube was stirred at 115 \, ^\circ \text{C for the desired time. No product was observed.}\]

\[\begin{align*}
\text{Ph} & - & \text{Ts} & & \text{N} & & \text{O} \\
\text{Ph} & - & \text{Ts} & & \text{N} & & \text{O} \\
\end{align*}
\]

\[\text{Ar}^1 = 4\text{-FC}_6\text{H}_4^-\]

\[\text{DTBP (3.0 equiv)} \quad \text{(CH}_2\text{OH)}_2, \text{N}_2, 115 \, ^\circ \text{C}, 24 \text{ h} \quad 2\text{i} + 2\text{a}\]

\[2\text{i}/2\text{a} = 1:0.06\]

\[N\text{-Sulfonyl-}N\text{-aryl propynamides 1i (0.1 mmol, 39 mg) and 1a}' (0.05 mmol, 11 mg), DTBP (0.3 mmol, 44 mg) and (CH}_2\text{OH)}_2 (2.0 mL) was added into a 20 mL Schlenk tube equipped with a Teflon cap. The reaction vessel was evacuated to about -0.1 MPa (last 30 seconds per time) and backfilled with N}_2 (1 atm) in three times. The sealed Schlenk tube was stirred at 115 \, ^\circ \text{C for the desired time. After the reaction mixture was cooled to room temperature, saturated brine water (3.0 mL) was added to terminate the reaction. The reaction mixture was diluted with EtOAc and washed with saturated brine water. The organic layer was dried over anhydrous Na}_2\text{SO}_4 and concentrated in vacuum. The residue was purified by flash column chromatography on silica gel with ethyl acetate-dichloromethane (1:3) as eluent to give the desired product. Product 2i and 2a (30.0 mg) as one mixture. The }^1\text{HNMR was tested as follows.}\]
3.3 Intramolecular KIE studies

a) Intramolecular KIE experiment: d-1a were synthesized by deuterated substrates according the literature procedure.\(^1\)\(^-\)\(^3\)

In a sealed tube, the mixture of d-1a (0.1 mmol) was treated by standard procedures and heated for 24 h. The mixture was concentrated in vacuum and the residue was purified by flash column chromatography on silica gel with ethyl acetate-dichloromethane (1:3) as eluent to give product d-2a. The mixture was analyzed using \(^1\)H NMR spectrometer. As shown in Figure 8, the KIE is nearly 1.08:1.
b): Intermolecular KIE experiment: d₅-1a was synthesized according the literature procedure.¹,²,⁴

In a sealed tube, the mixture of 1a (0.05 mmol) and d₅-1a (0.05 mmol) was treated by standard procedures and heated for 18 min. The mixture was concentrated in vacuum and the residue was purified by flash column chromatography on silica gel with ethyl acetate-dichloromethane (1:3) as eluent to give product 2a and d₄-2a. The mixture was analyzed using ¹H NMR spectrometer. As shown in Figure 9, the ratio of 2a and d₄-2a is nearly 1.04:1.

![Figure 8. The ¹H-NMR spectrum of intramolecular KIE study.](image-url)
Figure 9. The 1H-NMR spectrum of intermolecular KIE study.
4. Characterization data for the products

4-phenyl-3-tosylquinolin-2(1H)-one (2a)

Flash column chromatography on a silica gel (ethyl acetate-dichloromethane 1:3, $R_f = 0.31$) give the product (31.2 mg, 83% yield) as a white solid. m.p. > 250 °C. The compound is unknown. 1H NMR (DMSO-d$_6$ 300 MHz): δ 12.34 (s, 1H), 7.82 (d, J = 8.2 Hz, 2H), 7.53-7.66 (m, 4H), 7.37-7.43 (m, 5H), 7.14 (t, J = 7.5 Hz, 1H), 6.89 (d, J = 7.7 Hz, 1H), 2.39 (s, 3H). 13C NMR (CDCl$_3$ 100 MHz): δ 159.7, 156.9, 144.0, 139.5, 138.7, 134.4, 133.4, 129.5, 129.2, 129.0, 128.9, 128.6, 128.0, 127.9, 123.3, 120.6, 116.3, 21.7. MS (EI): 375 (M$^+$); HRMS (ESI-TOF) m/z [M + H]$^+$ calcd. for [C$_{22}$H$_{18}$NO$_3$S]$^+$ 376.1002, found 376.0996.

6-methyl-4-phenyl-3-tosylquinolin-2(1H)-one (2b)

Flash column chromatography on a silica gel (ethyl acetate-dichloromethane, 1:3, $R_f = 0.41$) give the product (38.9 mg, 64% yield) as a white solid. m.p. > 250 °C. The compound is unknown. 1H NMR (DMSO-d$_6$ 300 MHz): δ 12.23 (s, 1H), 7.79 (d, J = 8.2 Hz, 2H), 7.36-7.56 (m, 7H), 7.18 (s, 1H), 6.98 (d, J = 8.5 Hz, 1H), 6.76 (d, J = 8.4 Hz, 1H), 2.39 (s, 3H), 2.37 (s, 3H). 13C NMR (DMSO-d$_6$ 75 MHz): δ 157.6, 156.1, 145.0, 144.1, 140.6, 139.4, 135.3, 129.6, 129.3, 128.7, 128.7, 128.4, 128.3, 124.8, 118.0, 115.6, 22.0, 21.7. MS (EI): 389 (M$^+$); HRMS (ESI-TOF) m/z [M + H]$^+$ calcd. for [C$_{23}$H$_{20}$NO$_3$S]$^+$ 390.1158, found 390.1146.

6-ethyl-4-phenyl-3-tosylquinolin-2(1H)-one (2c)
Flash column chromatography on a silica gel (ethyl acetate-dichloromethane, 1:3,
R_f = 0.63) give the product (30.9 mg, 76% yield) as a white solid. m.p. > 250 °C. The
compound is unknown. 1H NMR (DMSO-d$_6$ 400 MHz): δ 12.21 (s, 1H), 7.78 (d, J =
8.2 Hz, 2H), 7.51-7.58 (m, 3H), 7.37 (d, J = 8.4 Hz, 4H), 7.20 (s, 1H), 7.01-7.03 (m,
1H), 6.79 (d, J = 8.5 Hz, 1H), 2.63-2.69 (m, 2H), 2.38 (s, 3H), 1.17 (t, J = 7.6 Hz, 3H).
13C NMR (DMSO-d$_6$ 100 MHz): δ 157.7, 156.3, 151.2, 144.3, 140.8, 139.5, 135.4,
129.7, 129.5, 128.8, 128.5, 123.9, 118.3, 114.6, 29.0, 21.8, 15.6. MS (EI): 403 (M$^+$); HRMS (ESI-TOF) m/z [M + H]$^+$calcd. for [C$_{24}$H$_{22}$NO$_3$S]$^+$ 404.1315, found 404.1322.

6-(tert-butyl)-4-phenyl-3-tosylquinolin-2(1H)-one (2d)

Flash column chromatography on a silica gel (ethyl acetate-dichloromethane, 1:3,
R_f = 0.51) give the product (35.4 mg, 82% yield) as a white solid. m.p. > 250 °C. The
compound is unknown. 1H NMR (DMSO-d$_6$ 400 MHz): δ 12.16 (s, 1H), 7.79 (d, J =
8.2 Hz, 2H), 7.52-7.58 (m, 3H), 7.36-7.38 (m, 5H), 7.23-7.26 (m, 1H), 6.82 (d, J = 8.8
Hz, 1H), 2.39 (s, 3H), 1.27 (s, 9H). 13C NMR (DMSO-d$_6$ 100 MHz): δ 157.6, 157.5,
156.0, 144.0, 140.5, 139.4, 135.3, 129.5, 129.1, 128.7, 128.6, 128.4, 128.3, 121.5,
117.9, 112.1, 35.6, 31.1, 21.7. MS (EI): 431 (M$^+$); HRMS (ESI-TOF) m/z [M +
H]$^+$calcd. for [C$_{26}$H$_{26}$NO$_3$S]$^+$ 432.1628, found 432.1594.

4,6-diphenyl-3-tosylquinolin-2(1H)-one (2e)
Flash column chromatography on a silica gel (ethyl acetate-petroleum ether, 1:1, \(R_f = 0.39\)) give the product (25.9 mg, 57% yield) as a white solid. m.p. > 250 °C. The compound is unknown. \(^1\)H NMR (DMSO-d\(_6\) 300 MHz): \(\delta\) 12.36 (s, 1H), 7.84 (d, \(J = 8.1\) Hz, 2H), 7.38-7.68 (m, 14H), 6.96 (d, \(J = 8.6\) Hz, 1H), 2.39 (s, 3H). \(^{13}\)C NMR (DMSO-d\(_6\) 75 MHz): \(\delta\) 157.5, 155.9, 145.4, 144.1, 140.9, 139.3, 139.0, 135.2, 130.1, 129.8, 129.6, 129.5, 129.2, 128.7, 128.4, 128.4, 127.6, 122.0, 119.3, 113.4, 21.7. MS (EI): 451 (M\(^+\)); HRMS (ESI-TOF) \(m/z\) [M + H\(^+\)] calcd. for \([\text{C}_{28}\text{H}_{22}\text{NO}_3\text{S}]^+\) 452.1315, found 452.1287.

7-methyl-4-phenyl-3-tosylquinolin-2(1H)-one (2f)

![Chemical structure of 7-methyl-4-phenyl-3-tosylquinolin-2(1H)-one (2f)](image)

Flash column chromatography on a silica gel (ethyl acetate-dichloromethane, 1:3, \(R_f = 0.36\)) give the product (17.6 mg, 45% yield (5:2)) as a white solid. m.p. > 250 °C. The compound is unknown. \(^1\)H NMR (DMSO-d\(_6\) 400 MHz): \(\delta\) 12.49 (s, 0.41H), 12.26 (s, 1H), 7.81-7.84 (m, 4H), 7.53-7.59 (m, 6H), 7.31-7.46 (m, 12H), 6.78 (d, \(J = 2.2\) Hz, 0.41H), 6.66 (s, 1H), 2.38 (s, 6H), 2.16 (s, 4H). \(^{13}\)C NMR (DMSO-d\(_6\) 100 MHz): \(\delta\) 157.3, 157.2, 155.9, 155.0, 144.4, 144.1, 139.4, 139.2, 139.0, 138.6, 135.4, 135.2, 134.5, 133.8, 132.1, 130.7, 129.6, 129.5, 129.5, 129.0, 128.9, 128.8, 128.7, 128.6, 128.4, 128.3, 127.9, 127.0, 121.4, 120.0, 118.2, 116.1, 21.7, 21.2. MS (EI): 389 (M\(^+\)); HRMS (ESI-TOF) \(m/z\) [M + H\(^+\)] calcd. for \([\text{C}_{23}\text{H}_{20}\text{NO}_3\text{S}]^+\) 390.1158, found 390.1133.

6-chloro-4-phenyl-3-tosylquinolin-2(1H)-one (2g)

![Chemical structure of 6-chloro-4-phenyl-3-tosylquinolin-2(1H)-one (2g)](image)

Flash column chromatography on a silica gel (ethyl acetate-dichloromethane, 1:3, \(R_f = 0.54\)) give the product (32.5 mg, 79% yield) as a white solid. m.p. > 250 °C. The
compound is unknown. 1H NMR (DMSO-d_6, 300 MHz): δ 12.40 (s, 1H), 7.81 (d, $J = 8.3$ Hz, 2H), 7.54-7.60 (m, 3H), 7.38-7.44 (m, 5H), 7.20-7.23 (m, 1H), 6.89 (d, $J = 8.9$ Hz, 1H), 2.40 (s, 3H). 13C NMR (DMSO-d_6, 75 MHz): δ 157.4, 155.8, 144.3, 141.1, 139.0, 138.6, 134.8, 131.4, 129.7, 129.7, 128.9, 128.8, 128.5, 128.4, 123.5, 119.1, 115.3, 21.7. MS (EI): 409 (M$^+$); HRMS (ESI-TOF) m/z [M + H]$^+$calcd. for [C$_{22}$H$_{17}$ClNO$_3$S]$^+$ 410.0612, found 410.0587.

7-chloro-4-phenyl-3-tosylquinolin-2(1H)-one (2h)

Flash column chromatography on a silica gel (ethyl acetate-dichloromethane, 1:3, $R_f = 0.43$) give the product (20.9 mg, 51% yield) as a white solid. m.p. > 250 °C. The compound is unknown. 1H NMR (DMSO-d_6, 400 MHz): δ 12.47 (s, 1H), 7.80 (d, $J = 8.1$ Hz, 2H), 7.65-7.68 (m, 1H), 7.57 (t, $J = 6.7$ Hz, 3H), 7.37-7.43 (m, 5H), 6.76 (t, $J = 2.0$ Hz, 1H), 2.38 (s, 3H). 13C NMR (DMSO-d_6, 100 MHz): δ 157.3, 155.1, 144.5, 139.2, 139.0, 134.5, 133.9, 130.7, 129.7, 129.1, 128.9, 128.6, 128.5, 127.9, 127.1, 121.4, 118.3, 21.8. MS (EI): 409 (M$^+$); HRMS (ESI-TOF) m/z [M + H]$^+$calcd. for [C$_{22}$H$_{17}$ClNO$_3$S]$^+$ 410.0612, found 410.0593.

6-fluoro-4-phenyl-3-tosylquinolin-2(1H)-one (2i)

Flash column chromatography on a silica gel (ethyl acetate-dichloromethane, 1:3, $R_f = 0.57$) give the product (30.0 mg, 76% yield) as a white solid. m.p. > 250 °C. The compound is unknown. 1H NMR (DMSO-d_6, 300 MHz): δ 12.43 (s, 1H), 7.83 (d, $J = 8.2$ Hz, 2H), 7.37-7.60 (m, 7H), 6.90-7.16 (m, 3H), 2.39 (s, 3H). 13C NMR (CDCl$_3$, 75 MHz): δ 167.2, 163.8, 160.2, 156.6, 144.3, 141.1 (d, $J = 12.8$ Hz), 138.6, 134.1, 132.4
(d, $J = 10.5$ Hz), 129.1, 128.9, 128.3 (d, $J = 3.0$ Hz), 128.2, 127.8, 117.6 (d, $J = 1.5$ Hz), 112.4 (d, $J = 23.3$ Hz), 102.3 (d, $J = 25.5$ Hz), 21.6. MS (EI): 393 (M$^+$); HRMS (ESI-TOF) m/z [M + H]$^+$ calcd. for [C$_{22}$H$_{17}$FNO$_3$S]$^+$ 394.0908, found 394.0884.

6,7-dimethyl-4-phenyl-3-tosylquinolin-2(1H)-one (2j)

Flash column chromatography on a silica gel (ethyl acetate-dichloromethane, 1:3, $R_f = 0.33$) give the product (23.9 mg, 59% yield) as a white solid. m.p. > 250 °C. The compound is unknown. 1H NMR (DMSO-d$_6$ 300 MHz): δ 11.16 (s, 1H), 7.79 (d, $J = 8.2$ Hz, 2H), 7.55 (d, $J = 6.5$ Hz, 3H), 7.36 (d, $J = 7.8$ Hz, 4H), 7.17 (s, 1H), 6.60 (s, 1H), 2.38 (s, 3H), 2.29 (s, 3H), 2.06 (s, 3H). 13C NMR (DMSO-d$_6$ 75 MHz): δ 157.4, 155.9, 144.6, 144.1, 139.5, 139.0, 135.4, 131.9, 129.5, 128.8, 128.7, 128.6, 128.4, 128.3, 118.2, 116.3, 21.7, 20.6, 19.8. MS (EI): 403 (M$^+$); HRMS (ESI-TOF) m/z [M + H]$^+$ calcd. for [C$_{24}$H$_{22}$NO$_3$S]$^+$ 404.1315, found 404.1296.

3-((4-methoxyphenyl)sulfonyl)-4-phenylquinolin-2(1H)-one (2k)

Flash column chromatography on a silica gel (ethyl acetate-dichloromethane, 1:3, $R_f = 0.26$) give the product (22.2 mg, 56% yield) as a yellow solid. m.p. > 250 °C. The compound is unknown. 1H NMR (CDCl$_3$ 300 MHz): δ 12.94 (s, 1H), 8.02 (d, $J = 8.8$ Hz, 2H), 7.55-7.65 (m, 4H), 7.35-7.39 (m, 3H), 7.07-7.16 (m, 2H), 6.92 (d, $J = 8.8$ Hz, 2H), 3.78 (s, 3H). 13C NMR (CDCl$_3$ 75 MHz): δ 163.4, 156.5, 139.4, 134.5, 133.3, 133.0, 131.4, 129.5, 128.6, 128.0, 127.9, 123.3, 120.7, 116.2, 113.5, 55.6. MS (EI): 391 (M$^+$); HRMS (ESI-TOF) m/z [M + H]$^+$ calcd. for [C$_{24}$H$_{18}$NO$_3$S]$^+$ 392.0951, found 392.0931.
3-((4-(tert-butyl)phenyl)sulfonyl)-4-phenylquinolin-2(1H)-one (2l)

Flash column chromatography on a silica gel (ethyl acetate-dichloromethane, 1:3, \(R_f = 0.58\)) give the product (32.7mg, 78% yield) as a white solid. m.p. > 250 °C. The compound is unknown. \(^1\)H NMR (CDCl\(_3\) 300 MHz): \(\delta\) 13.07 (s, 1H), 8.03 (d, \(J = 8.6\) Hz, 2H), 7.37-7.69 (m, 9H), 7.08-7.18 (m, 2H), 1.27 (s, 9H). \(^1^3\)C NMR (CDCl\(_3\) 75 MHz): \(\delta\) 159.8, 156.9, 156.8, 139.4, 138.4, 134.4, 133.4, 129.5, 129.2, 128.9, 128.6, 128.0, 127.9, 125.3, 123.2, 120.6, 116.3, 35.2, 31.1. MS (EI): 417 (M\(^+\)); HRMS (ESI-TOF) \(m/z\) [M + H\(^+\)] calcld. for [C\(_{25}\)H\(_{24}\)NO\(_3\)S]\(^+\) 418.1471, found 418.1448.

3-(naphthalen-2-ylsulfonyl)-4-phenylquinolin-2(1H)-one (2m)

Flash column chromatography on a silica gel (ethyl acetate-dichloromethane, 1:3, \(R_f = 0.44\)) give the product (24.4 mg, 59% yield) as a white solid. m.p. > 250 °C. The compound is unknown. \(^1\)H NMR (DMSO-d\(_6\) 300 MHz): \(\delta\) 12.32 (s, 1H), 8.59 (s, 1H), 8.21 (d, \(J = 7.6\) Hz, 1H), 8.04-8.11 (m, 2H), 7.89-7.92 (m, 1H), 7.50-7.75 (m, 8H), 7.40 (d, \(J = 8.1\) Hz, 1H), 7.18 (t, \(J = 7.8\) Hz, 1H), 6.94 (d, \(J = 8.0\) Hz, 1H). \(^1^3\)C NMR (DMSO-d\(_6\) 75 MHz): \(\delta\) 157.4, 156.7, 140.5, 139.4, 135.1, 135.0, 134.1, 132.1, 130.0, 129.6, 129.4, 129.1, 129.0, 128.8, 128.6, 128.4, 128.0, 123.6, 123.2, 120.1, 116.2. MS (EI): 411 (M\(^+\)); HRMS (ESI-TOF) \(m/z\) [M + H\(^+\)] calcld. for [C\(_{25}\)H\(_{18}\)NO\(_3\)S]\(^+\) 412.1002, found 412.0981.

4-phenyl-3-((4-(trifluoromethyl)phenyl)sulfonyl)quinolin-2(1H)-one (2o)
Flash column chromatography on a silica gel (ethyl acetate-dichloromethane, 1:3, \(R_f = 0.70 \)) give the product (34.1 mg, 79% yield) as a white solid. m.p. > 250 °C. The compound is unknown. \(^1\)H NMR (DMSO-d\(_6\) 400 MHz): \(\delta \) 12.43 (s, 1H), 8.15 (d, \(J = 8.2 \) Hz, 2H), 7.96 (d, \(J = 8.2 \) Hz, 2H), 7.67 (t, \(J = 7.5 \) Hz, 1H), 7.42-7.59 (m, 6H), 7.17 (t, \(J = 7.7 \) Hz, 1H), 6.95 (d, \(J = 8.2 \) Hz, 1H). \(^{13}\)C NMR (DMSO-d\(_6\) 100 MHz): \(\delta \) 157.5, 157.4, 146.2, 140.6, 134.7, 134.4, 133.2 (q, \(J = 31.9 \) Hz), 129.5, 129.3, 129.0, 128.6, 128.5, 128.4, 126.4 (q, \(J = 3.5 \) Hz), 124.1 (q, \(J = 271.2 \) Hz), 123.4, 120.1, 116.3. MS (EI): 429 (M\(^+\)); HRMS (ESI-TOF) \(m/z \) [M + H]\(^+\) calcld. for [C\(_{22}\)H\(_{15}\)F\(_3\)NO\(_3\)S]\(^+\) 430.0719, found 430.0701.

3-((4-chlorophenyl)sulfonyl)-4-phenylquinolin-2(1H)-one (2p)

Flash column chromatography on a silica gel (ethyl acetate-dichloromethane, 1:3, \(R_f = 0.51 \)) give the product (33.8 mg, 85% yield) as a white solid. m.p. > 250 °C. The compound is unknown. \(^1\)H NMR (DMSO-d\(_6\) 300 MHz): \(\delta \) 12.41 (s, 1H), 7.95 (d, \(J = 8.6 \) Hz, 2H), 7.63-7.68 (m, 3H), 7.53-7.60 (m, 3H), 7.41-7.46 (m, 3H), 7.13-7.18 (m, 1H), 6.93 (t, \(J = 4.1 \) Hz, 1H). \(^{13}\)C NMR (DMSO-d\(_6\) 75 MHz): \(\delta \) 157.3, 156.8, 141.0, 140.5, 138.6, 134.8, 134.2, 130.5, 129.4, 129.2, 128.8, 128.7, 128.4, 128.3, 123.2, 120.0, 116.1. MS (EI): 395 (M\(^+\)); HRMS (ESI-TOF) \(m/z \) [M + H]\(^+\) calcld. for [C\(_{21}\)H\(_{15}\)ClNO\(_3\)S]\(^+\) 396.0456, found 396.0431.

3-((4-bromophenyl)sulfonyl)-4-phenylquinolin-2(1H)-one (2q)
Flash column chromatography on a silica gel (ethyl acetate-dichloromethane, 1:3, $R_f = 0.51$) give the product (32.5 mg, 74% yield) as a white solid. m.p. $> 250 \, ^{\circ}C$. The compound is unknown. 1H NMR (DMSO-d$_6$ 400 MHz): δ 12.40 (s, 1H), 7.78-7.87 (m, 4H), 7.66 (t, $J = 7.4 \, Hz$, 1H), 7.53-7.59 (m, 3H), 7.41-7.44 (m, 3H), 7.16 (t, $J = 7.6 \, Hz$, 1H), 6.92 (d, $J = 8.2 \, Hz$, 1H). 13C NMR (DMSO-d$_6$ 100 MHz): δ 157.4, 156.9, 141.5, 140.5, 134.8, 134.3, 132.2, 130.62, 129.5, 128.8, 128.4, 127.1, 123.4, 120.1, 116.2. MS (EI): 438 (M$^+$); HRMS (ESI-TOF) m/z [M + H]$^+$ calcd. for [C$_{21}$H$_{15}$BrNO$_3$S]$^+$ 439.9951, found 439.9928.

4-phenyl-3-(thiophen-2-ylsulfonyl)quinolin-2(1H)-one (2t)

Flash column chromatography on a silica gel (ethyl acetate-dichloromethane, 1:3, $R_f = 0.33$) give the product (22.2 mg, 60% yield) as a yellow solid. m.p. $> 250 \, ^{\circ}C$. The compound is unknown. 1H NMR (CDCl$_3$ 300 MHz): δ 13.18 (s, 1H), 7.91-7.93 (m, 1H), 7.55-7.69 (m, 6H), 7.32-7.35 (m, 2H), 7.04-7.18 (m, 3H). 13C NMR (DMSO-d$_6$ 75 MHz): δ 157.5, 155.9, 142.9, 140.4, 135.9, 135.6, 135.0, 134.2, 129.7, 129.5, 128.8, 128.4, 128.3, 127.9, 123.2, 120.0, 116.1. MS (EI): 367 (M$^+$); HRMS (ESI-TOF) m/z [M + H]$^+$ calcd. for [C$_{19}$H$_{14}$NO$_3$S$_2$]$^+$ 368.0410, found 368.0392.

References

5. Copies of 1H NMR and 13C NMR spectra of 2a-2t

1H NMR

1H NMR

13C NMR

13C NMR

2f 1H NMR

2f 13C NMR