Supporting Information

tert-Butyl peroxybenzoate mediated formation of 3-alkylated

quinolines from *N*-propargylamines via cascade radical

addition/cyclization reaction

Wei Chen,^a Yicheng Zhang,^{a,b} Pinhua Li,*^a and Lei Wang*^{a,c}

^a Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R.
China, Tel: +86-561-3802-069 Fax: +86-561-3090-518 E-mail:
<u>leiwang@chnu.edu.cn</u>

^b School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China

^c State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China

Table of Contents

1. General considerations	S 2
2. General procedure for the reaction	S2
3. Free radical-trapping experiment	S 3
4. Kinetic isotope effect experiment	S 3
5. The X-ray single crystal analysis of 3c	S5
6. Characterization data for the products	S5
7. ¹ H and ¹³ C NMR spectra of the products	S19

1. General considerations

All ¹H NMR and ¹³C NMR spectra were recorded on a 400 MHz Bruker FT-NMR spectrometers (400 MHz or 100 MHz, respectively). All chemical shifts are given as δ value (ppm) with reference to tetramethylsilane (TMS) as an internal standard. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; m, multiplet; q, quartet. The coupling constants, J, are reported in Hertz (Hz). High resolution mass spectroscopy data of the product were collected on a Waters Micromass GCT instrument. High resolution mass spectroscopy data of the product were collected on an Agilent Technologies 6540 UHD Accurate-Mass Q-TOF LC/MS (ESI).

The starting material propargylamine (**1a–1o**) were prepared according to the reported method [L. Zhang, S. Chen, Y. Gao, P. Zhang, Y. Wu, G. Tang, and Y. Zhao, *Org. Lett.* 2016, **18**, 1286–1289]. The chemicals and solvents were purchased from commercial suppliers either from Aldrich (USA) or Shanghai Chemical Company (China) without further purification. All the solvents were dried and freshly distilled prior to use. Products were purified by flash chromatography on 200–300 mesh silica gels, SiO₂.

2. General procedure for the reaction

N-(3-Phenyl-2-propynyl)aniline derivative (**1**, 0.30 mmol), tetrahydrofuran (THF, **2a**, 3.0 mL), TBPB (0.60 mmol), and Cs₂CO₃ (0.60 mmol) were sequentially added to a Schlenk tube, and the reaction mixture was heated with stirring under air at 110 °C for 10 h. Upon completion, the reaction mixture was cooled to room temperature and the solution was concentrated in vacuum. The resulting mixture purified by flash column chromatography (petroleum ether/ethyl acetate = 5:1) to give the desired product (**3**).

3. Free radical-trapping experiment

N-(3-Phenyl-2-propynyl)aniline (1a, 0.30 mmol), tetrahydrofuran (THF, 2a, 3.0 TBPB mL), (0.60)mmol), Cs_2CO_3 (0.60)mmol) and 2,2,6,6-tetramethyl-1-oxylpiperidine (TEMPO, 0.60 mmol) were added to a Schlenk tube, and the reaction mixture was heated with stirring under air at 110 °C for 10 h. After the reaction was completed, no desired product 3a was detected by TLC and HPLC-HRMS, indicating that the reaction was completely inhibited. Meanwhile, a free radical-trapping adduct of THF with TEMPO was observed through HPLC-HRMS analysis of the reaction solution, shown in Figure S1.

Figure S1 HRMS analysis of the adduct of THF with TEMPO

4. Kinetic isotope effect experiment

N-(3-Phenyl-2-propynyl)aniline (**1a**, 0.20 mmol), TBPB (0.40 mmol), Cs₂CO₃ (0.40 mmol), THF (1.0 mL) and [D₈]-THF (1.0 mL) were sequentially added to a Schlenk tube, and the reaction mixture was heated with stirring under air at 110 °C for 10 h. Upon completion, the reaction mixture was cooled to room temperature and the solution was concentrated in vacuum. The resulting mixture purified by flash column chromatography (petroleum ether/ethyl acetate = 5:1) to give the desired products **3a**/[D₇]-**3a**. The kinetic isotope effect (K_H/K_D) was found to be from the ¹H NMR of **3a**/[D₇]-**3a**.

5. The X-ray single crystal analysis of 3c (CCDC: 1576256)

6. Characterization data for the products

4-phenyl-3-(tetrahydrofuran-2-yl)quinoline (3a)

Pale yellow solid (53.7 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.14$ (s, 1H), 8.15 (d, J = 8.8 Hz, 1H), 7.69–7.65 (m, 1H), 7.53–7.50 (m, 3H), 7.41–7.40 (m, 2H), 7.34 (d, J = 7.6 Hz, 1H), 7.23–7.22 (m, 1H), 4.77 (dd, J = 8.2 Hz and J = 6.8 Hz, 1H), 4.20–4.14 (m, 1H), 3.89–3.84 (m, 1H), 2.15–2.04 (m, 2H), 1.97–1.86 (m, 1H), 1.83–1.75 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 149.3$, 147.3, 145.0, 135.8, 133.1, 129.8, 129.4, 129.1, 128.8, 128.6, 128.2, 128.1, 127.1, 126.5, 126.2, 77.1, 69.1, 35.1, 26.5; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₉H₁₈NO: 276.1383, Found: 276.1386.

3-(tetrahydrofuran-2-yl)-4-(*p*-tolyl)quinoline (**3b**)

Pale yellow solid (53.8 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.13$ (s, 1H), 8.14 (d, J = 8.8 Hz, 1H), 7.67–7.63 (m, 1H), 7.44–7.37 (m, 2H), 7.34–7.31 (m, 2H), 7.23–7.21 (m, 1H), 7.12–7.10 (m, 1H), 4.79 (dd, J = 8.0 Hz and J = 6.7 Hz, 1H), 4.20–4.14 (m, 1H), 3.89–3.84 (m, 1H), 2.47 (s, 3H), 2.16–2.03 (m, 2H), 1.97–1.86 (m, 1H), 1.84–1.75 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 149.2$, 147.3, 145.1, 137.8, 133.2, 132.7, 129.7, 129.3, 129.2, 129.0, 128.9, 128.7, 127.2, 126.4, 126.3, 77.1, 69.0, 35.0, 26.5, 21.3; HRMS (ESI) ([M+H]⁺) Calcd. For C₂₀H₂₀NO: 290.1539, Found: 290.1536.

4-(4-methoxyphenyl)-3-(tetrahydrofuran-2-yl)quinoline (**3c**)

Pale yellow solid (55.0 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.12$ (s, 1H), 8.13 (d, J = 8.8 Hz, 1H), 7.67–7.62 (m, 1H), 7.46–7.37 (m, 2H), 7.26–7.23 (m, 1H), 7.14–7.12 (m, 1H), 7.06–7.02 (m, 2H), 4.80 (dd, J = 8.3 Hz and J = 4.5 Hz, 1H), 4.19–4.13 (m, 1H), 3.89 (s, 3H), 3.87–3.83 (m, 1H), 2.15–2.02 (m, 2H), 1.97–1.86 (m, 1H), 1.83–1.76 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 159.3$, 149.2, 147.3, 144.8, 133.3, 130.9, 130.2, 129.3, 128.6, 127.7, 127.4, 126.3, 126.2, 113.9, 113.7, 77.1, 68.9, 55.2, 35.0, 26.5; HRMS (ESI) ([M+H]⁺) Calcd. For C₂₀H₂₀NO₂: 306.1489, Found: 306.1502.

4-(4-(*tert*-butyl)phenyl)-3-(tetrahydrofuran-2-yl)quinoline (**3d**)

Pale yellow solid (67.6 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.13$ (s, 1H), 8.14 (d, J = 8.8 Hz, 1H), 7.66–7.62 (m, 1H), 7.53–7.49 (m, 2H), 7.45–7.37 (m, 2H), 7.26–7.24 (m, 1H), 7.15–7.13 (m, 1H), 4.80 (dd, J = 8.2 Hz and J = 6.8 Hz, 1H), 4.19–4.14 (m, 1H), 3.89–3.84 (m, 1H), 2.17–2.03 (m, 2H), 1.98–1.85 (m, 1H), 1.83–1.76 (m, 1H), 1.42 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 150.9$, 149.3, 147.3, 145.1, 133.2, 132.6, 129.5, 129.3, 128.8, 128.6, 127.2, 126.4, 126.3, 125.4, 125.0, 77.0, 69.0, 35.1, 34.6, 31.3, 26.5; HRMS (ESI) ([M+H]⁺) Calcd. For C₂₃H₂₆NO: 332.2009, Found: 332.2006.

4-(4-fluorophenyl)-3-(tetrahydrofuran-2-yl)quinoline (**3e**)

Pale yellow solid (51.0 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.14$ (s, 1H), 8.14 (d, J = 8.8 Hz, 1H), 7.67–7.63 (m, 1H), 7.42–7.35 (m, 2H), 7.31–7.28 (m, 1H), 7.23–7.19 (m, 3H), 4.74 (dd, J = 8.0 Hz and J = 6.9 Hz, 1H), 4.18–4.13 (m, 1H), 3.88–3.83 (m, 1H), 2.14–2.03 (m, 2H), 1.95–1.86 (m, 1H), 1.83–1.74 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 162.4$ (d, J = 246.3 Hz), 149.1, 147.2, 143.8, 133.2, 131.5 (d, J = 3.5 Hz), 131.4 (d, J = 8.0 Hz), 130.8 (d, J = 8.0 Hz), 129.3, 128.7, 126.9, 126.5, 125.8, 115.6 (d, J = 21.4 Hz), 115.3 (d, J = 21.4 Hz), 76.9, 68.9, 34.8, 26.4; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₉H₁₇FNO: 294.1289, Found: 294.1292.

4-(4-chlorophenyl)-3-(tetrahydrofuran-2-yl)quinoline (**3f**)

Pale yellow solid (55.8 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.13$ (s, 1H), 8.15 (d, J = 8.4 Hz, 1H), 7.69–7.65 (m, 1H), 7.52–7.49 (m, 2H), 7.43–7.40 (m, 1H), 7.36–7.33 (m, 1H), 7.29–7.27 (m, 1H), 7.18–7.15 (m, 1H), 4.73 (dd, J = 8.3 Hz and J = 6.6 Hz, 1H), 4.18–4.13 (m, 1H), 3.89–3.83 (m, 1H), 2.14–2.03 (m, 2H), 1.96–1.88 (m, 1H), 1.84–1.74 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 149.2$, 147.3, 143.7, 134.3, 134.2, 133.1, 131.2, 130.5, 129.5, 128.9, 128.6, 126.8, 126.7, 125.8, 77.0, 69.0, 34.9, 26.5; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₉H₁₇ClNO: 310.0993, Found: 310.0996.

4-(4-bromophenyl)-3-(tetrahydrofuran-2-yl)quinoline (3g)

Pale yellow solid (65.9 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.13$ (s, 1H), 8.15 (d, J = 8.8 Hz, 1H), 7.69–7.64 (m, 3H), 7.44–7.40 (m, 1H), 7.37–7.35 (m, 1H), 7.22 (dd, J = 8.7 Hz and J = 2.4 Hz, 1H), 7.11 (dd, J = 7.9 Hz and J = 1.8 Hz, 1H), 4.73 (dd, J = 8.4 Hz and J = 6.4 Hz, 1H), 4.19–4.14 (m, 1H), 3.90–3.84 (m, 1H), 2.15–2.04 (m, 2H), 1.98–1.88 (m, 1H), 1.84–1.75 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 149.2$, 147.3, 143.6, 134.7, 133.0, 131.9, 131.5, 131.5, 130.8, 129.5, 128.9, 126.7, 126.7, 125.8, 122.4, 77.0, 69.1, 35.0, 26.5; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₉H₁₇BrNO: 354.0488, Found: 354.0487.

4-(3-(tetrahydrofuran-2-yl)quinolin-4-yl)benzonitrile (3h)

Pale yellow solid (60.4 mg, 67% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.14$ (s, 1H), 8.16 (d, J = 8.8 Hz, 1H), 7.85–7.82 (m, 2H), 7.72–7.68 (m, 1H), 7.50–7.37 (m, 3H), 7.25 (d, J = 8.3 Hz, 1H), 4.65 (dd, J = 8.4 Hz and J = 6.7 Hz, 1H), 4.17–4.12 (m, 1H), 3.89–3.84 (m, 1H), 2.13–2.05 (m, 2H), 1.99–1.89 (m, 1H), 1.86–1.77 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 149.3$, 147.3, 142.8, 141.0, 132.7, 132.4, 132.1, 130.7, 130.2, 129.7, 129.2, 127.1, 126.1, 125.4, 118.3, 112.4, 76.9, 69.1, 34.9, 26.5; HRMS (ESI) ([M+H]⁺) Calcd. For C₂₀H₁₇N₂O: 301.1335, Found: 301.1336.

1-(4-(3-(tetrahydrofuran-2-yl)quinolin-4-yl)phenyl)ethanone (3i)

Pale yellow solid (60.9 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.13$ (s, 1H), 8.14 (d, J = 8.4 Hz, 1H), 8.11–8.09 (m, 2H), 7.68–7.64 (m, 1H), 7.45–7.38 (m, 2H), 7.36–7.28 (m, 2H), 4.68 (dd, J = 8.4 Hz and J = 6.6 Hz, 1H), 4.16–4.11 (m, 1H), 3.87–3.81 (m, 1H), 2.68 (s, 3H), 2.12–2.02 (m, 2H), 1.93–1.87 (m, 1H), 1.85–1.77 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 197.4$, 149.2, 147.2, 143.7, 140.9, 136.8, 132.8, 130.2, 129.5, 128.9, 128.6, 128.1, 126.7, 126.4, 125.7, 76.9, 69.0, 35.0, 26.6, 26.4; HRMS (ESI) ([M+H]⁺) Calcd. For C₂₁H₂₀NO₂: 318.1489, Found: 318.1491.

3-(tetrahydrofuran-2-yl)-4-(4-(trifluoromethyl)phenyl)quinoline (**3j**) Pale yellow solid (71.1 mg, 69% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.15$ (s, 1H), 8.17 (d, J = 8.4 Hz, 1H), 7.82–7.79 (m, 2H), 7.71–7.67 (m, 1H), 7.50–7.48 (m, 1H), 7.45–7.37 (m, 2H), 7.29 (d, J = 8.4 Hz, 1H), 4.69 (dd, J = 8.5 Hz and J = 6.6 Hz, 1H), 4.19–4.14 (m, 1H), 3.90–3.84 (m, 1H), 2.14–2.05 (m, 2H), 1.98–1.91 (m, 1H), 1.87–1.78 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 149.3$, 147.3, 143.3, 139.8, 132.9, 130.5 (q, J = 32.6 Hz), 129.7, 129.7 (d, J = 124.9 Hz), 129.6, 126.9, 126.5, 125.7, 125.7 (q, J = 3.7 Hz), 125.3 (q, J = 3.7 Hz), 124.0 (q, J = 270.7 Hz), 76.9, 69.1, 35.0, 26.5; HRMS (ESI) ([M+H]⁺) Calcd. For C₂₀H₁₇F₃NO: 344.1257, Found: 344.1261.

3-(tetrahydrofuran-2-yl)-4-(*m*-tolyl)quinoline (**3k**+**3k**')

Pale yellow oil (47.7 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.13$ (s, 1H), 8.14 (d, J = 8.4 Hz, 1H), 7.67–7.63 (m, 1H), 7.42–7.37 (m, 3H), 7.30–7.28 (m, 1H), 7.14–7.12 (m, 1H), 7.03–7.00 (m, 1H), 4.80–4.76 (m, 1H), 4.20–4.14 (m, 1H), 3.90–3.83 (m, 1H), 2.43 (s, 1.5H), 2.42 (s, 1.5H), 2.14–2.04 (m, 2H), 1.95–1.87 (m, 1H), 1.83–1.76 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 149.2$, 147.2, 145.2, 145.1, 138.2, 137.8, 135.6, 133.0, 133.0, 130.4, 129.5, 129.2, 128.7, 128.7, 128.4, 128.1, 127.1, 126.8, 126.4, 126.3, 126.1, 77.0, 69.0, 69.0, 35.1, 35.0, 26.5, 21.4, 21.4; HRMS (ESI) ([M+H]⁺) Calcd. For C₂₀H₂₀NO: 290.1539, Found: 290.1533.

3-(tetrahydrofuran-2-yl)-4-(*o*-tolyl)quinoline (**3l+3l**')

Pale yellow oil (37.3 mg, 43% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.152$ (s, 1H), 9.146 (s, 1H), 8.15 (d, J = 8.4 Hz, 2H), 7.67–7.63 (m, 2H), 7.41–7.36 (m, 6H), 7.34–7.30 (m, 2H), 7.25–7.22 (m, 2H), 7.17 (d, J = 7.5 Hz, 1H), 7.05 (d, J = 7.4 Hz, 1H), 4.75 (dd, J = 8.8 Hz and J = 6.6 Hz, 1H), 4.57 (dd, J = 8.4 Hz and J = 6.4 Hz, 1H), 4.19–4.09 (m, 2H), 3.89–3.82 (m, 2H), 2.12–1.99 (m, 4H), 1.96 (s, 3H), 1.90 (s, 3H), 1.88–1.81 (m, 2H), 1.79–1.69 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 149.4$, 149.3, 147.3, 147.2, 144.7, 144.3, 136.4, 135.8, 135.2, 135.2, 133.3, 133.0, 130.2, 130.0, 129.8, 129.4, 129.4, 128.8, 128.8, 128.3, 126.7, 126.6, 126.1, 125.8, 125.7, 125.6, 76.9, 69.1, 68.8, 35.0, 33.9, 26.4, 19.7, 19.6; HRMS (ESI) ([M+H]⁺) Calcd. For C₂₀H₂₀NO: 290.1539, Found: 290.1538.

3-(tetrahydrofuran-2-yl)-4-(thiophen-2-yl)quinoline (**3m**)

Pale yellow solid (45.6 mg, 54% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.13$ (s, 1H), 8.15 (d, J = 8.4 Hz, 1H), 7.71–7.67 (m, 1H), 7.63–7.61 (m, 1H), 7.56 (dd, J = 5.2 Hz and J = 1.0 Hz, 1H), 7.49–7.45 (m, 1H), 7.24–7.22 (m, 1H), 7.08–7.07 (m, 1H), 4.95 (dd, J = 8.2 Hz and J = 7.1 Hz, 1H), 4.23–4.18 (m, 1H), 3.95–3.90 (m, 1H), 2.27–2.20 (m, 1H), 2.15–2.06 (m, 1H), 2.03–1.92 (m, 1H), 1.87–1.78 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 149.0$, 147.3, 137.7, 135.4, 135.2, 129.4, 129.0, 128.9, 128.0, 127.3, 127.1, 126.9, 126.0, 77.2, 69.3, 35.4, 26.6; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₇H₁₆NOS: 282.0947, Found: 282.0945.

6-methyl-4-phenyl-3-(tetrahydrofuran-2-yl)quinoline (**3n**)

Pale yellow solid (53.0 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.07$ (s, 1H), 8.04 (d, J = 8.8 Hz, 1H), 7.54–7.49 (m, 4H), 7.34–7.32 (m, 1H), 7.23–7.21 (m, 1H), 7.13 (s, 1H), 4.74 (dd, J = 8.2 Hz and J = 6.5 Hz, 1H), 4.19–4.14 (m, 1H), 3.89–3.83 (m, 1H), 2.39 (s, 3H), 2.13–2.03 (m, 2H), 1.94–1.86 (m, 1H), 1.84–1.74 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 148.3$, 146.0, 144.3, 136.4, 136.0, 133.0, 131.0, 129.8, 129.1, 128.6, 128.2, 128.0, 127.0, 125.0, 77.2, 69.0, 35.0, 26.5, 21.7; HRMS (ESI) ([M+H]⁺) Calcd. For C₂₀H₂₀NO: 290.1539, Found: 290.1537.

6-methoxy-4-phenyl-3-(tetrahydrofuran-2-yl)quinoline (30)

Pale yellow solid (49.5 mg, 54% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.98$ (s, 1H), 8.04 (d, J = 9.2 Hz, 1H), 7.54–7.45 (m, 3H), 7.34–7.30 (m, 2H), 7.22–7.21 (m, 1H), 6.63–6.62 (m, 1H), 4.73 (dd, J = 8.1 Hz and J = 6.6 Hz, 1H), 4.17–4.12 (m, 1H), 3.87–3.82 (m, 1H), 3.66 (s, 3H), 2.12–2.01 (m, 2H), 1.93–1.86 (m, 1H), 1.82–1.75 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 157.7$, 146.7, 143.7, 143.4, 136.0, 133.3, 130.7, 129.7, 128.9, 128.7, 128.3, 128.0, 120.9, 104.4, 77.2, 69.0, 55.2, 35.0, 26.4; HRMS (ESI) ([M+H]⁺) Calcd. For C₂₀H₂₀NO₂: 306.1489, Found: 306.1485.

6-fluoro-4-phenyl-3-(tetrahydrofuran-2-yl)quinoline (**3p**)

Pale yellow solid (45.8 mg, 52% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.09$ (s, 1H), 8.15–8.11 (m, 1H), 7.53–7.49 (m, 3H), 7.44–7.39 (m, 1H), 7.32–7.30 (m, 1H), 7.21–7.19 (m, 1H), 6.99 (dd, J = 10.1 Hz and J = 2.8 Hz, 1H), 4.76 (dd, J = 8.3 Hz and J = 6.5 Hz, 1H), 4.19–4.13 (m, 1H), 3.89–3.83 (m, 1H), 2.12–2.04 (m, 2H), 1.94–1.86 (m, 1H), 1.81–1.76 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 160.6$ (d, J = 245.7 Hz), 148.6 (d, J = 2.7 Hz), 144.5, 144.4, 135.3, 133.9, 131.8 (d, J = 9.2 Hz), 129.7, 128.9, 128.8, 128.4, 128.3, 128.0 (d, J = 9.4 Hz), 118.9 (d, J = 25.6 Hz), 109.6 (d, J = 23.1 Hz), 77.0, 69.1, 35.0, 26.5; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₉H₁₇FNO: 294.1289, Found: 294.1287.

6-chloro-4-phenyl-3-(tetrahydrofuran-2-yl)quinoline (**3q**)

Pale yellow solid (53.9 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.12$ (s, 1H), 8.08 (d, J = 8.8 Hz, 1H), 7.59 (dd, J = 9.0 Hz and J = 2.2 Hz, 1H), 7.55–7.52 (m, 3H), 7.35–7.30 (m, 2H), 7.21–7.19 (m, 1H), 4.74 (dd, J = 8.2 Hz and J = 6.7 Hz, 1H), 4.18–4.13 (m, 1H), 3.89–3.83 (m, 1H), 2.14–2.04 (m, 2H), 1.94–1.88 (m, 1H), 1.82–1.75 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 149.5$, 145.7, 144.2, 135.1, 134.1, 132.5, 131.0, 129.7, 129.7, 129.0, 128.8, 128.5, 128.4, 127.9, 125.0, 69.1, 35.0, 26.5; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₉H₁₇CINO: 310.0993, Found: 310.0996.

6-bromo-4-phenyl-3-(tetrahydrofuran-2-yl)quinoline (3r)

Pale yellow solid (59.5 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.13$ (s, 1H), 8.00 (d, J = 8.9 Hz, 1H), 7.72 (dd, J = 8.9 Hz and J = 2.2 Hz, 1H), 7.55–7.50 (m, 4H), 7.32–7.29 (m, 1H), 7.21–7.18 (m, 1H), 4.73 (dd, J = 8.4 Hz and J = 6.5 Hz, 1H), 4.18–4.12 (m, 1H), 3.88–3.82 (m, 1H), 2.13–2.02 (m, 2H), 1.95–1.85 (m, 1H), 1.81–1.74 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 149.6$, 145.9, 144.0, 134.9, 134.1, 132.2, 131.1, 129.7, 128.9, 128.8, 128.4, 128.4, 128.3, 128.3, 120.7, 76.9, 69.1, 35.0, 26.5; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₉H₁₇BrNO: 354.0488, Found: 354.0485.

4-phenyl-3-(tetrahydrofuran-2-yl)quinoline-6-carbonitrile (3s)

Pale yellow solid (45.1 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.25$ (s, 1H), 8.21 (d, J = 9.4 Hz, 1H), 7.82–7.79 (m, 2H), 7.58–7.54 (m, 3H), 7.32–7.29 (m, 1H), 7.22–7.19 (m, 1H), 4.77 (dd, J = 8.3 Hz and J = 6.5 Hz, 1H), 4.20–4.14 (m, 1H), 3.91–3.85 (m, 1H), 2.17–2.06 (m, 2H), 1.99–1.90 (m, 1H), 1.82–1.75 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 152.3$, 148.2, 145.3, 135.1, 134.2, 132.8, 130.9, 129.6, 129.4, 129.0, 128.8, 128.7, 126.8, 118.7, 110.2, 76.8, 69.2, 35.0, 26.5; HRMS (ESI) ([M+H]⁺) Calcd. For C₂₀H₁₇N₂O: 301.1335, Found: 301.1333.

ethyl 4-phenyl-3-(tetrahydrofuran-2-yl)quinoline-6-carboxylate (**3t**) Pale yellow solid (55.2 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.20$ (s, 1H), 8.25 (dd, J = 8.9 Hz and J = 1.7 Hz, 1H), 8.18–8.16 (m, 2H), 7.57–7.51 (m, 3H), 7.35–7.33 (m, 1H), 7.24–7.21 (m, 1H), 4.77 (dd, J = 8.3 Hz and J = 6.5 Hz, 1H), 4.34 (q, J = 6.8 Hz, 2H), 4.19–4.14 (m, 1H), 3.89–3.84 (m, 1H), 2.15–2.05 (m, 2H), 1.98–1.87 (m, 1H), 1.84–1.77 (m, 1H), 1.34 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl3): $\delta = 166.1$, 151.4, 149.1, 146.3, 134.9, 134.0, 129.8, 129.6, 129.3, 129.0, 128.7, 128.4, 128.4, 128.3, 126.4, 76.9, 69.1, 61.1, 35.0, 26.5, 14.2; HRMS (ESI) ([M+H]⁺) Calcd. For C₂₂H₂₂NO₃: 348.1594, Found: 348.1590.

8-methyl-4-phenyl-3-(tetrahydrofuran-2-yl)quinoline (3u)

Pale yellow solid (49.5 mg, 57% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.18$ (s, 1H), 7.54–7.46 (m, 4H), 7.35–7.28 (m, 2H), 7.25–7.21 (m, 2H), 4.78 (dd, J = 8.0 Hz and J = 6.7 Hz, 1H), 4.20–4.14 (m, 1H), 3.91–3.85 (m, 1H), 2.88 (s, 3H), 2.14–2.05 (m, 2H), 1.93–1.86 (m, 1H), 1.84–1.77 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 148.0$, 146.4, 145.2, 137.0, 136.3, 132.9, 129.9, 129.2, 129.1, 128.5, 128.2, 128.0, 127.0, 126.2, 124.4, 77.2, 69.1, 35.1, 26.6, 18.3; HRMS (ESI) ([M+H]⁺) Calcd. For C₂₀H₂₀NO: 290.1539, Found: 290.1535.

8-bromo-4-phenyl-3-(tetrahydrofuran-2-yl)quinoline (**3v**)

Pale yellow solid (57.4 mg, 54% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.26$ (s, 1H), 7.99 (dd, J = 7.4 Hz and J = 1.1 Hz, 1H), 7.54–7.49 (m, 3H), 7.36 (dd, J = 8.4 Hz and J = 1.2 Hz, 1H), 7.32–7.29 (m, 1H), 7.25–7.18 (m, 2H), 4.77 (dd, J = 7.9 Hz and J =6.7 Hz, 1H), 4.17–4.12 (m, 1H), 3.89–3.84 (m, 1H), 2.14–2.02 (m, 2H), 1.92–1.87 (m, 1H), 1.82–1.75 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 150.1$, 145.4, 144.3, 135.4, 134.3, 132.5, 129.7, 129.0, 128.7, 128.6, 128.3, 128.3, 126.7, 126.2, 125.0, 76.9, 69.2, 35.0, 26.5; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₉H₁₇BrNO: 354.0488, Found: 354.0483.

4-phenyl-3-(tetrahydro-2H-pyran-2-yl)quinoline (4a)

Pale yellow solid (46.0 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.19$ (s, 1H), 8.15 (d, J = 8.4 Hz, 1H), 7.69–7.65 (m, 1H), 7.57–7.50 (m, 3H), 7.41–7.35 (m, 3H), 7.24–7.21 (m, 1H), 4.26 (dd, J = 10.9 Hz and J = 2.6 Hz, 1H), 4.09 (dd, J = 11.4 Hz and J = 4.5 Hz, 1H), 3.43–3.37 (m, 1H), 1.88–1.84 (m, 1H), 1.76–1.65 (m, 3H), 1.52–1.49 (m, 1H), 1.45–1.35 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 149.7$, 147.3, 144.8, 135.7, 132.8, 129.6, 129.3, 129.2, 128.8, 128.5, 128.2, 128.0, 127.1, 126.5, 126.4, 76.2, 68.9, 33.6, 25.6, 23.8; HRMS (ESI) ([M+H]⁺) Calcd. For C₂₀H₂₀NO: 290.1539, Found: 290.1548.

3-(1,4-dioxan-2-yl)-4-phenylquinoline (4b)

Pale yellow solid (41.1 mg, 47% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.26$ (s, 1H), 8.77 (d, J = 8.5 Hz, 1H), 7.97–7.93 (m, 1H), 7.72–7.68 (m, 1H), 7.60–7.54 (m, 4H), 7.30–7.29 (m, 1H), 7.19–7.17 (m, 1H), 4.62 (dd, J = 10.0 Hz and J = 2.5 Hz, 1H), 3.87–3.84 (m, 1H), 3.73–3.60 (m, 4H), 3.31–3.25 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 155.8$, 142.1, 137.2, 134.0, 132.1, 130.7, 130.1, 130.0, 129.3, 129.0, 128.5, 128.0, 127.4, 127.1, 121.7, 72.4, 70.7, 66.6, 65.9; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₉H₁₈NO₂: 292.1332, Found: 292.1334.

3-(1,3-dioxolan-2-yl)-4-phenylquinoline (4c)

Pale yellow solid (36.6 mg, 44% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.17$ (s, 1H), 8.18 (d, J = 8.4 Hz, 1H), 7.74–7.70 (m, 1H), 7.54–7.50 (m, 4H), 7.47–7.43 (m, 1H), 7.39–7.37 (m, 2H), 5.63 (s, 1H), 4.22–4.19 (m, 2H), 3.96–3.92 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 149.3$, 148.2, 147.6, 134.5, 129.9, 129.6, 129.5, 128.3, 128.1, 127.1, 126.8, 126.6, 126.6, 100.9, 65.7; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₈H₁₆NO₂: 278.1176, Found: 278.1178.

3-(1,3-dioxolan-4-yl)-4-phenylquinoline (**4c'**) Pale yellow solid (19.1 mg, 23% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.18$ (s, 1H), 8.18 (d, J = 8.4 Hz, 1H), 7.73–7.68 (m, 1H), 7.58–7.50 (m, 3H), 7.46–7.42 (m, 2H), 7.38–7.35 (m, 1H), 7.19–7.16 (m, 1H), 5.34 (s, 1H), 5.00 (s, 1H), 4.96 (t, J = 8.0 Hz, 1H), 4.00–3.96 (m, 1H), 3.74–3.70 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 148.8$, 147.7, 146.0, 135.3, 129.6, 129.5, 129.4, 129.3, 129.0, 128.8, 128.5, 128.5, 126.8, 126.8, 126.2, 96.1, 74.0, 71.5; HRMS (ESI) ([M+H]⁺) Calcd. For C₁₈H₁₆NO₂: 278.1176, Found: 278.1171.

3-(2-methyltetrahydrofuran-2-yl)-4-phenylquinoline (4d) and 3-(5-methyltetrahydrofuran-2-yl)-4-phenylquinoline (4d') Pale yellow solid (59.0 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.39$ (s, 1H), 9.15 (s, 0.4H), 8.15–8.12 (m, 1.5H), 7.67–7.61 (m, 1.5H), 7.54–7.47 (m, 4.5H), 7.39–7.32 (m, 2.5H), 7.29–7.24 (m, 2H), 7.22–7.18 (m, 1.5H), 4.97–4.93 (m, 0.4H), 4.49–4.44 (m, 0.4H), 3.96–3.91 (m, 1H), 3.77–3.72 (m, 1H), 2.20–2.13 (m, 1H), 2.06–1.99 (m, 1H), 1.90–1.83 (m, 1.5H), 1.81–1.73 (m, 1H), 1.60–1.54 (m, 1H), 1.28 (s, 3H), 1.27 (d, J = 6.0 Hz, 0.4H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 149.9$, 149.3, 147.2, 146.9, 144.6, 143.8, 137.6, 137.5, 135.8, 133.8, 130.1, 129.8, 129.7, 129.3, 129.1, 128.6, 128.5, 128.3, 128.2, 128.0, 127.9, 127.7, 127.0, 126.4, 126.4, 126.2, 126.1, 84.0, 76.7, 66.7, 39.4, 36.4, 34.7, 30.0, 25.8, 21.2; HRMS (ESI) ([M+H]⁺) Calcd. For C₂₀H₂₀NO: 290.1539, Found: 290.1544.

7. ¹H and ¹³C NMR spectra of the products

S20

S35

