Design and Synthesis of Dodecahedral Carbon Nanocages Incorporated with Fe$_3$O$_4$

Siyuan Xiang1, Yanhong Shi2, Kai Zhang1*, Yixin Chen1, Rui Ge1, Ce Wu1, Haizhu, Sun2, Bai Yang1

1State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China.

2Faculty of Chemistry, Northeast Normal University, Changchun 130024, China.

The author to whom correspondence should be addressed. E-mail: zk@jlu.edu.cn; Fax: +86-431-85193423; Tel: +86-431-85168283.
Table of Contents

Table S1 Elemental analysis of Fe₃O₄/C NCs.

Table S2 ICP results of Fe₃O₄/C NCs.

Figure S1 TEM image of Fe₃O₄ NPs (A), optical photographs of Fe₃O₄/C without (left) and with magnet placing on the side wall of glass vial (right) and M-H curves of Fe₃O₄ NPs and Fe₃O₄/C NCs (C) and (D).

Figure S2 Complex images of Fe₃O₄/PDA NCs (A) and Fe₃O₄/C NCs (B), elemental mapping images of C (red, C and D) and Fe (green, E and F).

Figure S3 TEM images of Fe₃O₄/ZIF-8 nanostructure with different quantity of Fe₃O₄ NPs with 1mg (A), 2mg (C), and 5 mg (E) and the corresponding Fe₃O₄/C NCs (B, D, and F). The insets are the TEM images of corresponding Fe₃O₄/ZIF-8 nanostructure and Fe₃O₄/C NCs with high magnification.

Figure S4 TEM image of Fe₃O₄/C NCs with high magnification.

Figure S5 Cyclic voltammograms between 10 mV and 3V at a scan rate of 0.1 mV s⁻¹ (A), charge-discharge voltage profiles (B) and rate capability at various current rates (C) of the C NCs.

Figure S6 SEM images of Fe₃O₄/C NCs electrode after cycling (A) and the a broken Fe₃O₄/C NCs with high magnification.
Figure S1 TEM image of Fe₃O₄ NPs (A), optical photographs of Fe₃O₄/C without (left) and with magnet placing on the side wall of glass vial (right) and M-H curves of Fe₃O₄ NPs and Fe₃O₄/C NCs (C) and (D).
Figure S2 Complex images of Fe$_3$O$_4$/PDA NCs (A) and Fe$_3$O$_4$/C NCs (B), elemental mapping images of C (red, C and D) and Fe (green, E and F).
Table S1. Elemental analysis of Fe$_3$O$_4$/C NCs.

<table>
<thead>
<tr>
<th>Elements</th>
<th>The weight percentage /%</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>36.1</td>
</tr>
<tr>
<td>N</td>
<td>2.8</td>
</tr>
<tr>
<td>H</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Table S2. ICP results of Fe$_3$O$_4$/C NCs.

<table>
<thead>
<tr>
<th>Elements</th>
<th>Concentration /ppm</th>
<th>The weight percentage /% (Characterization)</th>
<th>The weight percentage /% (Calculation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td>30.9</td>
<td>30.0</td>
<td>37.4 (ZnO)</td>
</tr>
<tr>
<td>Fe</td>
<td>5.0</td>
<td>4.9</td>
<td>20.3 (Fe$_3$O$_4$)</td>
</tr>
</tbody>
</table>
Figure S3 TEM images of Fe₃O₄/ZIF-8 nanostructure with different quantity of Fe₃O₄ NPs with 1mg (A), 2mg (C), and 5 mg (E) and the corresponding Fe₃O₄/C NCs (B, D and F). The insets are the TEM images of corresponding Fe₃O₄/ZIF-8 nanostructure and Fe₃O₄/C NCs with high magnification.
Figure S4 TEM image of Fe$_3$O$_4$/C NCs with high magnification.
Figure S5 Cyclic voltammograms between 10 mV and 3V at a scan rate of 0.1 mV s\(^{-1}\) (A), charge-discharge voltage profiles (B) and rate capability at various current rates (C) of the C NCs.
Figure S6 SEM images of Fe$_3$O$_4$/C NCs electrode after cycling (A) and the broken Fe$_3$O$_4$/C NCs with high magnification.