Supporting Information

Different-sized black phosphorus nanosheets with good cytocompatibility and high photothermal performance

Haidi Fu, a,b Zhibin Li, b,c Hanhan Xie, b Zhengbo Sun, b Beike Wang, a Hao Huang, b Guangli Han, a,* Huaiyu Wang, b Paul K. Chu c & Xue-Feng Yu b

a State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, P. R. China.

b Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.

c Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China.

* Correspondence and requests for materials should be addressed to G.L.H (email: guanglihan@hotmail.com)

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017
Figure S1. HRTEM image of BP nanosheets.

Figure S2. Photothermal heating curves of distilled water and the L-BP, M-BP, S-BP water suspension at different concentrations (12.5 and 50.0 μg/mL) irradiated with an 808 nm laser (1.0 W/cm²). (a) 12.5 μg/mL. (b) 50.0 μg/mL.

Figure S3. Absorbance spectra of L-BP (a), M-BP (b), S-BP (c) stored in DMSO for up to 7 days. Insets: Absorption ratios (A/A₀) at 808 nm.
Figure S4. CCK-8 assays of (a) Hela cells, and (b) MCF-7 cells before and after the incubation with the three BP nanosheets for 24 h at different concentrations (6.3, 12.5, 25.0 and 50.0 μg/mL). The data are represented as means ± standard deviation. Almost no cytotoxicity can be observed for the two types of cells even at a high concentration of 50.0 μg/mL.