Supplementary information:

Visible-light-activated photoelectrochemical biosensor for the detection of pesticide acetochlor in vegetable and fruit based on its inhibition towards glucose oxidase

Dangqin Jin*, Aiqin Gong, Zhou Hui
Department of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, P.R. China

*Authors to whom any correspondence should be addressed.
Tel: +86 514 87433053; Fax: +86 514 87433017; E-mail: jindangqin@163.com
Fig. S1 UV–vis diffuse reflection spectra of (a) GOx, (b) NH$_2$-MIL-125(Ti)/TiO$_2$, (c) NH$_2$-MIL-125(Ti)/TiO$_2$/Gox, and (d) GOx/CS/NH$_2$-MIL-125(Ti)/TiO$_2$.

Fig. S2 FTIR spectra of (a) NH$_2$-MIL-125(Ti)/TiO$_2$, (b) GOx, (c) GOx/NH$_2$-MIL-125(Ti)/TiO$_2$, and (d) GOx/CS/NH$_2$-MIL-125(Ti)/TiO$_2$.
Fig. S3 UV–vis diffuse reflection spectra of (a) TiO$_2$ (b) NH$_2$-MIL-125(Ti) and (c) NH$_2$-MIL-125(Ti)/TiO$_2$.

Table S1 Comparison of the analytical performance of different methods for acetochlor detection

<table>
<thead>
<tr>
<th>Method</th>
<th>Linear range (mol L$^{-1}$)</th>
<th>Detection limit (mol L$^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSPE-DLLM/GCa</td>
<td>3.7×10^{-10}–1.8×10^{-7}</td>
<td>4.0×10^{-11}</td>
<td>Bai et al., 2013</td>
</tr>
<tr>
<td>SPME/GC–MSb</td>
<td>3.7×10^{-10}–3.7×10^{-8}</td>
<td>4.0×10^{-12}</td>
<td>Xu et al., 2007</td>
</tr>
<tr>
<td>UPLC/MS/MSc</td>
<td>3.0×10^{-11}–1.9×10^{-10}</td>
<td>7.0×10^{-14}</td>
<td>Gervais et al., 2008</td>
</tr>
<tr>
<td>Photocatalytic–electrochemical sensor</td>
<td>5.0×10^{-7}–2.0×10^{-5}</td>
<td>2.0×10^{-10}</td>
<td>Jin et al., 2014</td>
</tr>
<tr>
<td>GOx/CS/NH$_2$-MIL-125(Ti)/TiO$_2$ biosensor</td>
<td>2.0×10^{-11}–1.0×10^{-9}</td>
<td>3.0×10^{-12}</td>
<td>This work</td>
</tr>
</tbody>
</table>

aMSPE-DLLM/GC: magnetic solid phase extraction-dispersive liquid liquid microextraction combined with gas chromatography
bSPME/GC–MS: solid-phase microextraction combined with gas chromatography with mass spectrometry

cUPLC/MS/MS: ultra-performance liquid chromatography combined with tandem mass spectrometry

REFERENCES