Supporting Information

Inclusion Complexes of Organic Salts with β-Cyclodextrin as Organocatalysts for CO₂ Cycloaddition with Epoxides

Kun Li, Xiaohui Wu, Qingwen Gu, Xiuge Zhao, Mingming Yuan, Wenbao Ma, Wenxiu Ni, and Zhenshan Hou
*Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, China.
Fig. S1 1H NMR spectra of (a) [DBUH][PhO]; (b) [DBUH][p-NO$_2$-PhO]; (c) [DBUH][p-FPhO]; (d) [DBUH][o-FPhO]; (e) [DBUH][PFPhO].
Fig. S2 13C NMR spectra of (a) [DBUH][PhO]; (b) [DBUH][p-FPhO]; (c) [DBUH][o-FPhO]; (d) [DBUH][p-NO$_2$-PhO].
Fig. S3 1H NMR spectra of (a) β-CD; (b) [DBUH][PhO]/β-CD; (c) [DBUH][p-FPhO]/β-CD; (d) [DBUH][o-FPhO]/β-CD; (e) [DBUH][p-NO$_2$PhO]/β-CD; (f) [DBUH][PFPhO]/β-CD.
Fig. S4 13C NMR spectra of (a) β-CD; (b) [DBUH][PFPhO]; (c) [DBUH][PFPhO]/β-CD (0.054 mmol/mL in d$_6$-DMSO); (d) [DBUH][PFPhO]/β-CD (0.108 mmol/mL in d$_6$-DMSO); (e) [DBUH][PFPhO]/β-CD (0.134 mmol/mL in d$_6$-DMSO).
Fig. S5 The 19F NMR spectra (500 MHz) of the [DBUH][PFPhO]/β-CD (a) 0.108 mmol/mL in d$_6$-DMSO; (b) 0.134 mmol/mL in d$_6$-DMSO; (c) 0.108 mmol/mL in d$_6$-DMSO at 70 °C.
Fig. S6 The thermal gravity analysis of (a) β-CD; (b) [DBU][PFPhO]; (c) [DBU][PFPhO]/β-CD.
Fig. S7 The SEM images of β-CD (a, d); [DBUH][PFPhO] (b, c); [DBUH][PFPhO]/β-CD (e, f).
Fig. S8 Relationship of PO remaining with reaction time at different temperature over cayalyst: (a) [DBUH][PFPhO]/β-CD; (b) [DBUH][PFPhO]; and relationship of -Ln(1-Con.) with reaction time at different temperature over cayalyst: (c) [DBUH][PFPhO]/β-CD; (d) [DBUH][PFPhO].
Table S1. The pKa value of phenol and other derivatives

<table>
<thead>
<tr>
<th>Entry</th>
<th>Anion part</th>
<th>pKa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>9.94</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>9.81</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>8.71</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>7.15</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5.50</td>
</tr>
</tbody>
</table>
Table S2. The effect of amount of [DBUH][PFPhO]β-CD on the catalyst activity. a

<table>
<thead>
<tr>
<th>Entry</th>
<th>The amount of catalyst b</th>
<th>Con.%</th>
<th>Sel.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0 mmol%</td>
<td>89.9</td>
<td>99.3</td>
</tr>
<tr>
<td>2</td>
<td>1.5 mmol%</td>
<td>98.7</td>
<td>98.2</td>
</tr>
<tr>
<td>3</td>
<td>2.0 mmol%</td>
<td>79.9</td>
<td>97.9</td>
</tr>
</tbody>
</table>

a Reaction conditions: PO 0.7 mL (10 mmol), 130 °C, 3 MPa, 10 h; b The amount of catalyst was based on that of [DBUH][PFPhO].
Fig. S9 13C NMR spectra of (a) Fresh [DBUH][PFPhO]; (b) [DBUH][PFPhO] after the absorption of CO$_2$; (c) [DBUH][PFPhO] after removing the CO$_2$ by vacuuming.
Scheme S1 The plausible mechanism of CO$_2$ absorption by [PFPhO]$^\cdot$.