Supporting Information

Nitrogen-doped Fe3C@C particles as efficient heterogeneous photo-assisted Fenton catalyst

Xiaoling Yang,‡a Chengjia Li,‡a Jianfei Huang,b Yanyan Liu,a Wei Chen,a Jianhua Shen,a Yihua Zhu,*a and Chunzhong Li*a

a Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China. E-mail: yhzhu@ecust.edu.cn, czli@ecust.edu.cn

b Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara 93106, CA, USA
Fig. S1. UV-visible spectra of NFC-5 and NFC-8.

Fig. S2. Element mapping of NFC-8 particles.
Fig. S3. The XPS survey scan of the NFC-8.

Fig. S4. Recycling performance of NFC-8.
Fig. S5. SEM images of (a) NFC-2, (b) NFC-5, (d) NFC-12.

There are no obvious difference in morphology and structure among various NFC samples as showed in Fig. 2c and Fig. S5.

Fig. S6. SEM and TEM images of NFC-8 after recycling performance testing.

There are no obvious changes in morphology and structure after recycling performance testing.
Fig. S7. UV-Vis adsorption changes of methylene blue solutions during photo-assisted Fenton process. 0.15 M H₂O₂ with NFC-8 (a) 0.25 g/L, (b) 0.5 g/L, (c) 0.75 g/L, (d) 1.0 g/L.
Fig. S8. UV-Vis adsorption changes of methylene blue solutions during photo-assisted Fenton process. 0.75 g/L NFC-8 with H$_2$O$_2$ (a) 0.1 M, (b) 0.125 M, (c) 0.15 M, (d) 1.0 M.

Fig. S9. The MB degradation efficiency of NFC-2, NFC-5, NFC-8 and NFC-12.