Incorporating 131I into a PAMAM (G5.0) Dendrimer-conjugate: Design of a Theranostic Nanosensor for Medullary Thyroid Carcinoma

Rui He1, Hongwang Wang2, Yuling Su1, Cuihua Chen1, Lijun Xie1, Lilin Chen1, Jing Yu2, Yubisela Toledo1, Gayani S. Abayaweera1, Gaohong Zhu1*, Stefan H. Bossmann2*

1 Department of Nuclear Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
2 Department of Chemistry, Kansas State University, Manhattan, KS, USA

(Corresponding authors :Gaohong Zhu, email: 1026909611@qq.com, Stefan H. Bosmann, email: sbossman@ksu.edu)

Supplementary Information

Figure S1: 1H-NMR spectrum (Varian, 400MHz) of the maleimide linker used in this study.
Figure S2: MALDI-TOF of KYKYKYC (M+ peak).

Figure S3: MALDI-TOF of GPLPLRC (M+ peak).
How many 131I atoms are bonded to each PAMAM Starburst dendrimer?

1) How many 131I atoms are present in a 3mCi Na^{131}I?

The Curie is defined as $3.7 \cdot 10^{10} \text{ s}^{-1}$, or 37 GBq. 3 mCi = $1.11 \times 10^8 \text{ s}^{-1}$.

The decay constant λ of 131I is $9.94 \times 10^{-7} \text{ s}^{-1}$.

The rate of decay is defined as:

$$- \frac{dN}{dt} = \lambda N = 9.94 \times 10^{-7} \text{ s}^{-1} \times N$$

$N = 1.1167 \times 10^{14} ^{131}$I atoms. This corresponds to 1.8544×10^{-10} moles of 131I atoms.

The molecular weight of PAMAM G5.0 is 28,826 g mol$^{-1}$. According to our ICP analysis, each dendrimer is linked to 18 units of KYKYKYC (995.20 g mol$^{-1}$ per unit). Furthermore, G5.0-VTP is additionally linked to 9 units of GPLPLRC (754.95 g mol$^{-1}$ per unit).

Therefore, the molecular weights of the functionalized dendrimers are:

- G5.0: $(28,826 + 18 \times 995.20) \text{ g mol}^{-1} = 46,739.6 \text{ g mol}^{-1}$.
- G5.0-VTP: $(28,826 + 18 \times 995.20 + 9 \times 754.95) \text{ g mol}^{-1} = 53,534.15 \text{ g mol}^{-1}$.

10 micrograms of G5.0 = 2.139×10^{-10} moles
10 micrograms of G5.0-VTP = 1.868×10^{-10} moles

According to our experimental design, the maximal labeling degrees are:

- G5.0: 1.8544×10^{-10} moles of 131I atoms / 2.139×10^{-10} moles = 0.87
- G5.0-VTP: 1.8544×10^{-10} moles of 131I atoms / 1.868×10^{-10} moles = 0.99.

When considering the obtained labelling rates of $93 \pm 1\%$ and $85 \pm 2\%$, respectively, each mole of G5.0 was chemically linked to 0.81 moles of 131I, whereas each mole of G5.0-VTP was coupled to 0.84 moles of 131I.

Reference: