Supporting Information

Synthesis, structure and gas adsorption properties of a stable microporous metal-organic framework assembled from T-shaped pyridyl dicarboxylate ligand

Di Wang, Libo Sun, Yuchuan Liu, Jianfeng Du, Shun Wang, Xiaowei Song*
and Zhiqiang Liang*

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China

E-mail: xiaowaisong@jlu.edu.cn; liangzq@jlu.edu.cn
Fax: +86-431-85168609
Fig. S1 Representations of the asymmetric units of compounds 1 showing ellipsoid at the 50% probability level.

Fig. S2 Powder X-ray diffraction patterns of the simulated, as-synthesized, after gas adsorption/desorption measurements, after CO$_2$ adsorption/desorption cycles and exposed in the air for 10 months of compound 1.
Fig. S3 Infra-red spectra of M1, M2, H$_2$PBPD and compound 1.

Fig. S4 TGA curves of compound 1 and activated.
Fig. S5 Measured CH$_4$ and CO$_2$ isotherms at 273 K and 298 K along with the DSLF fits for compound 1.

Fig. S6 IAST predicted equimolar gas mixture adsorption selectivities at 273 K (a) and 298 K (b) for compound 1.
Fig. S7 (a) Nonlinear curves fitting of CO$_2$ for compound 1 at 273 K and 298 K; (b) Isosteric heat of CO$_2$ for compound 1.
Fig.S8 The 1H and 13C NMR spectra of M1.
Fig. S9 The 1H and 13C NMR spectra of M2.
Fig. S10 The 1H and 13C NMR spectra of H$_2$PBPD.
Fig. S11 MS of M1, M2 and H$_2$PBPD.
Table S1 Crystal Data and Structure Refinement for compound 1.a

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C\textsubscript{25}H\textsubscript{31}N\textsubscript{3}O\textsubscript{9}Cu</td>
</tr>
<tr>
<td>Formula weight</td>
<td>580.14</td>
</tr>
<tr>
<td>Temperature</td>
<td>296(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Hexagonal, R-3</td>
</tr>
<tr>
<td>a</td>
<td>18.9711(9) Å</td>
</tr>
<tr>
<td>α</td>
<td>90°</td>
</tr>
<tr>
<td>b</td>
<td>18.9711(9) Å</td>
</tr>
<tr>
<td>β</td>
<td>90°</td>
</tr>
<tr>
<td>c</td>
<td>44.954(2) Å</td>
</tr>
<tr>
<td>γ</td>
<td>120°</td>
</tr>
<tr>
<td>Volume</td>
<td>14011.3(11) Å3</td>
</tr>
<tr>
<td>Z</td>
<td>18</td>
</tr>
<tr>
<td>Calculated density</td>
<td>0.812 mg/cm3</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.714 mm-1</td>
</tr>
<tr>
<td>F(000)</td>
<td>3474</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.32 to 25.33°</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-20 ≤ h ≤ 22, -22 ≤ k ≤ 22, -49 ≤ l ≤ 53</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
<td>30455 / 5645</td>
</tr>
<tr>
<td>R\textsubscript{int}</td>
<td>0.0452</td>
</tr>
<tr>
<td>Completeness to theta = 25.33</td>
<td>99.1%</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>5645/0/262</td>
</tr>
<tr>
<td>Goodness-of-fit on F2</td>
<td>1.184</td>
</tr>
<tr>
<td>Final R indices [I > 2σ(I)]b</td>
<td>R\textsubscript{1} = 0.0597, wR\textsubscript{2} = 0.2127</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R\textsubscript{1} = 0.0735, wR\textsubscript{2} = 0.2315</td>
</tr>
</tbody>
</table>

aDate based on \textit{PLATON/SQUEEZE} mode.

bR\textsubscript{1} = \frac{\sum|F_o|-|F_c|}{\sum|F_o|}, wR\textsubscript{2} = \left[\frac{\sum w (F_o^2-F_c^2)^2}{\sum w (F_o^2)^2} \right]^{1/2}.
<table>
<thead>
<tr>
<th>Bond angels</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O(3)-Cu(1)-O(4)</td>
<td>88.39(15)</td>
</tr>
<tr>
<td>O(3)-Cu(1)-O(2)</td>
<td>166.66(12)</td>
</tr>
<tr>
<td>O(4)-Cu(1)-O(2)</td>
<td>89.53(16)</td>
</tr>
<tr>
<td>O(3)-Cu(1)-O(1)</td>
<td>89.47(16)</td>
</tr>
<tr>
<td>O(4)-Cu(1)-O(1)</td>
<td>166.75(12)</td>
</tr>
<tr>
<td>O(2)-Cu(1)-O(1)</td>
<td>89.54(17)</td>
</tr>
<tr>
<td>O(3)-Cu(1)-N(1)</td>
<td>104.03(13)</td>
</tr>
<tr>
<td>O(4)-Cu(1)-N(1)</td>
<td>104.09(13)</td>
</tr>
<tr>
<td>O(2)-Cu(1)-N(1)</td>
<td>89.25(13)</td>
</tr>
<tr>
<td>O(1)-Cu(1)-N(1)</td>
<td>89.11(13)</td>
</tr>
</tbody>
</table>