Supporting Information

In-Situ Formation of pH-Responsive Prussian Blue for Photoacoustic

Imaging and Photothermal Therapy of Cancer

Ming Cheng,[‡]a Wei Peng,[‡]a Peng Hua,^a Zhengrong Chen,^{*}a Jia Sheng,^a Juan Yang,^{*}b and Yongyou Wu^{*a}

^aDepartment of general surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215007, China

^bSanitation & Environment Technology Institute, Soochow University, Suzhou 215123, China

*Address correspondence to: chen zr@126.com; yang juan8726@163.com; wuyoyo@aliyun.com

Supplementary Results

Concentration (µM)-Time (min)

Figure S1. Thermal images of prussian blue solution with different concentrations under 808-nm laser irradiation at a power density of 0.5 W/cm² for 10 min.

Figure S2. Temperature increment (Δ T) of solutions irradiated by 808 nm laser for 10 min against the prussian blue concentration.

Figure S3. Photoacoustic images of prussian blue solution with different concentration in phantom.

Figure S4. UV-Vis-NIR absorbance spectra of prussian blue (100 μ M) stored in buffer solutions with different pH for different period of time.

Figure S5. Illustration of the formation and degradation of pH-responsive hydrogel.

Figure S6. UV-Vis-NIR absorbance spectra of hydrogel mixture after being incubated in buffer solution with different pH values for different period of time.

Figure S7. Comparison of the UV-Vis-NIR absorbance spectra of hydrogel mixture after being incubated in buffer with different pH values for 24 h.