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1. Additional morphology and structure characterization of CuSny particles

Cusn,,

Fig. S1 SEM images with the corresponding high magnification images of the areas marked by dashed
boxes of CuSno. (a), CuSnoa (b), CuSnos (c), and CuSn (d). The scale bars in all images are 1 um.



CuSn, CuSn

Fig. S2 TEM images of CuSno.os (2), CuSnoa (b), CuSng2 (), CuSno4 (d), CuShos (e), and CuSn (f) products.
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CuSn,, CuSn,,

Fig. S3 Line scans of Cu and Sn elemental profiles of CuSng.es (&), CuSnoa (b), CuSng2 (c), CuSng4 (d), and
CuSnos (e).
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Fig. S4 XPS signals of Cu (a-c), CuSnoo1 (d-f), CuSng.es (g-i), CuSno1 (j-1), CuSng2 (m-0), CuSnoa (p-r),
CuSnos (s-u), and CuSn (v-x) particles before and after sputtering. Images in the left column represent the
spectra from Sn 3d electrons. Images in the middle column illustrate the spectra from Cu 2p electrons.
Images in the right column are the spectra from Cu LMM Auger electrons. For Cu 2p electrons, metallic
copper has a major peak at 932.4 eV.! For Cu LMM Auger electrons, shoulder peaks around 565 eV are

attributed to metallic copper, while peaks around 570 eV are evidence for the existence of copper oxides."
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2. Additional results of oxidation behavior of CuSny particles
a — b '

Cu

CuSn ,

Fig. S5 TEM images of the Cu (a-b) and CuSng1 (c-d) particles after being oxidized in ambient for 60 min
at 100 °C. Oxide layers were formed on the particle surfaces as shown by the lattice fringe in (d), which is
attributed to the (110) plane of Cu,O (PDF No. 01-071-3645). Similar results have also been observed by

other researchers in the oxidation of Cu particles.®
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Fig. S6 In-situ XRD measurements of pure Cu (a), CuSnoos (b), and CuSno.1 (c) when the sample
temperature was held at 200 °C in ambient air subject to heating. (d) The temperature profile of the sample
during the oxidation. In (d), the red dots correspond to initiation of XRD scans.
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Fig. S7 O, partial pressures in the product streams of the packed-bed reactor when the volume percents of
O, in feed stream are 1.4 % (a) and 10 % (b).



Fig. S8 TEM images of Cu (a)-(b), CuSngs (c)-(d), and CuSng1 (e)-(f) particles after being oxidized in
packed-bed reactor under 300 °C. The volume percent of O, in feed stream is 1.4 %. (b), (d), and (f) are the
higher magnification images of the areas marked by red boxes in (a), (c), and (e), respectively.
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Fig. S9 TEM images of Cu (a)-(c), CuSng.es (d)-(f), and CuSno.1 (g)-(i) particles after being oxidized in
packed-bed reactor under 500 °C. The volume percent of O; in feed stream is 1.4 %. (b), (), and (h) are the
higher magnification images of the areas marked by red boxes in (a), (d), and (g), respectively. (c), (f), and
(i) are the selected area electron diffraction (SAED) patterns of areas highlighted by yellow boxes in (b),
(e), and (h), respectively. SAED images are obtained by performing the fast Fourier transform (FFT). The
identified phases are CuO (PDF No. 01-073-6023) and SnO, (PDF No. 01-072-1147).
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Fig. S10 (a) O flow rate in the product stream of the packed-bed reactor when the volume percent of O in

feed stream is 10 %. (b) The relative weight gains of the powder during the oxidation. The weight gain is
calculated by applying the trapezoidal method on the results shown in (a). (c) XRD pattern of powders after
being oxidized in a packed-bed reactor at 500 °C under 10 vol % O, stream.
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Fig. S11 TGA (left axis) and DSC (right axis) measurements on Cu particles (black curves) and CuSno 1
particles (green curves). The initial oxidation temperature of CuSno 1 (vertical green dashed line) is ~ 44 °C
higher than Cu (black dashed line). There are two distinct exotherms in both heat flow curves at 380 °C
(Cu) and 365 °C (CuSn0.1) corresponding to the weight losses.

13



) U Cu@5002°C!
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Fig. S12 SEM images of particles after being oxidized in a packed-bed reactor under 300 °C (a)-(c) and
500 °C (d)-(f). The volume percent of O, in the feed stream is 1.4 %. The scale bars in SEM images are 2

pm.
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3. Theoretical analysis of particle oxidation
a) Shrinking-core model simulation

To test this hypothesis, the shrinking-core model (SCM) was utilized to simulate the oxidation process
and to investigate the chemical kinetics and material transport.*® The densities of Cu (8.9 g/cm®) and Sn
(7.3 g/cm®) are comparable to their corresponding oxides, such as Cu,O (6.0 g/cm?), CuO (6.3 g/cm®), SnO
(6.5 g/lcm?), and SnO; (7.0 g/cm?).°

The particle diameter was assumed to be constant during the oxidation process at 300 °C, which is also
validated by the SEM images of the post-oxidation particles, as shown in Fig. S12a-c. For oxidation at 500
°C, SCM is not applicable because of significant coagulation between particles and the resulting particle
size change (Fig. S12d-f). The oxidation process can be divided into three steps: (i) migration of O, gas
through the gas film around the particle to the particle surface; (ii) diffusion of O; gas through the porous
oxide ash layer to the inner metal core; (iii) reaction of O, gas with metal core.* ® If Step (i) controls the

process the radius of the unreacted core, rc, can be related to the oxidation time through:*

PpR _ (Te\3
= (1~ (] (S1)
_ __PpR
= 3bkyCoz,g (S2)

where t is the oxidation time. 7 is the time for a complete oxidation. py is the density of the particle. R
is the radius of the particle, which is assumed to be 355 nm. b is the stoichiometric coefficient in the

oxidation. kg is the mass transfer coefficient. Coz4 is the Oz gas concentration in the main stream.

If Step (ii) controls the process:*

_ _PoRY otz 4 o Tens
= o [1-3C9% + 265 (3)
2
T= ot (S4)
6bD¢Co2,g

where D, is the effective diffusion coefficient of O; in the ash layer.
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If Step (iii) controls the process:*

_ __Pp _

t= = (R=1) (35)
___ Pp

T= brCorg R (S6)

where ky is the first-order rate constant of Cu oxidation.

kq in Equations (S1-S2) can be obtained as follows:’

ky =150 (C22)sh (S7)
Sh = Re'/?5c1/3 (S8)
Re = % (S9)
U= j—" (S10)
Sc = i (S11)

T1.75(L+L)1/2
Dyp = 1073 — 1oz Mna” (512)
P[(Vg2)3+(Vy2)3]?

All dimensionless numbers, Sh, Re, Sc, and symbols are defined in Table S2-S3. The diffusivity of O,
gas through the oxide ash layer (De) is first assumed to be 10™1” m?/s at 300 °C based on the reported O, gas
diffusion coefficient in Cu,0.® After that, the actual De in our situation will be approximated by fitting to

our experimental data.

For Equation (S3-S4), as the products of Cu oxidation are Cu,O and CuO, the rate constants

representing the processes of converting Cu to Cu,0 (kv1) and Cu,O to CuO (ky,2) are described as:®

—44415 2L

k,1 = 8.2 X 10° exp <Tm°l> (s71) (S13)
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—55+15 4L

k,, = 1.0 X 107 exp <Tm"l> (s71) (S14)

The carrier gas was assumed to be pure N2 gas when calculating the kinematic viscosity (v), which is

4.8x10° m%s based on the dynamic viscosity of N gas at 300 °C and 1.01x10° Pa.’

For Cu particles, the oxidation products include CuO and Cu2O (Fig. 8, main text). As shown in Table
S1, Step (ii), internal diffusion of O, gas through porous oxide ash layer controls the process in both

scenarios.

For CuSnos particles, the oxidation products are Cu,O and SnO; (Fig. 8, main text). Step (ii) is the

rate-limiting step. Detailed results are shown in Table S1.

For CuSno.1 particles, the oxidation products are Cu20 and SnO- (Fig. 8, main text). Step (ii) controls

the process. Detailed results are shown in Table S1.

Therefore, the oxidation of Cu, CuSnoes, and CuSng particles are all controlled by internal diffusion

of O gas through the oxide ash layer based on SCM simulation.

b) Detailed procedures to obtain the D

In the SCM simulation, we utilized a diffusion coefficient of O, gas through Cu,O layer at 300 °C
obtained from the literature, 10" m?s at 300 °C,® which may not represent the internal diffusion of O, in
our system. Thus, the actual diffusion coefficients in Equations (S3-S4) were fitted. To simplify the fitting

model,
x=[1-3G)% +26°] (815)
Then Equation (S3) becomes:

PpRZ
6bD¢Coz g

(S16)
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To obtain the actual De, the results in Fig. 7 (main text) need to be converted from (Am/m vs. t) to (t vs.
X). The r¢/R in Equation (S3) can be obtained by assuming the thickness of the oxide layer was uniform on

the particle surface.® Therefore, the volume of oxide layer can be calculated as:
V= n(R®—17) (S17)

The relative weight gain caused by oxidation is:

Vpp.ZMWO
Am _ uw b (S18)
m Vpp

Cu particles:

To convert the results in Fig. 7 of main text (Am/m vs. t) into t vs. x, equations are also derived based

on the two situations when Cu.O and CuO were the oxidation products.
If Cu is oxidized to Cu,0, b=4. Then Equation (S18) can be converted into:

4
3R -r)pcy Mwg

am _ _ Mwey 2 _ Mwo [1- (93] (S19)

4
m §7TR3PCu 2Mwey

When Cu is assumed to be directly oxidized into CuO, b=2. Then:

4
3rR3-13)pcy

w,
m _ _Mwey 0 _ Mwo g (%3] (S20)

4
m §7TR3pCu Mwcy

The curves representing the t vs. x are presented in Fig. S13a-b. In the case of Cu,0 as the main product,
the results in Fig. S13a are not well explained by SCM. In the SCM, Equation (S16) is linear and its slope
is a monotonic function of D.. If the oxidation product is CuO, the curve is still not linear (Fig. S13b).

However, De is 2.2x10™ m?s, if we fit the non-linear curve to a linear equation.

CuSngs particles:

18



Equation (S18) can be transformed into the following equation, because the oxidation products are

Cu20 and SnO; (Fig. 8, main text):

2n®3-13)
3 ¢)PCcusSno.os (MWo +0.1Mw)
+0.
Am MW (1,510.05 2 o __ 0.6Mwg [1 _ (2)3] (821)
— = z =
m 3R pcusno.os MWcysno.os R

By applying Equation (S16) and (S21), curves in Fig. 7 (Am/m vs. t) can be converted into t vs. x. The

result is shown in Fig. S13c.

For CuSng particles:

Equation (S18) can be transformed into following equation, because the oxidation products are Cu,O
and SnO; (Fig. 8, main text):

4 p3_,3
3% (R°-1¢)PCcusno.1 Mwp
: (5 +02Mwo) g gy,

Am _ _ Mweysnoa [1- (%)3] (S22)

x =
m §7TR3pCu5no.1 Mwcysno.1

By applying Equations (S16) and (S22), curves in Fig. 7 (Am/m vs. t) can be converted into t vs. X. The

result is illustrated in Fig. S13d.
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Table S1. Simulation results of particle oxidation at 300 °C in a packed-bed reactor by shrinking-core
model. The diffusion coefficients listed here are obtained by fitting the experimental results, as shown in
Fig. S13. The reported diffusion coefficients are 10" m?/s for both situations of O, through Cu.O and O
through SnO; and at 300 °C.2*°

8.8x10* s CuO

Particles
Cu CuSnoos CuSno 1
300 °C 300 °C 300 °C
Op 1.4x10° mol/m3 1.4x10° mol/m3 1.3x10° mol/m3
Mw 64 g/mol 66 g/mol 69 g/mol
Sc 56 56 56
Re 2.1x10° 2.1x10° 2.1x10°
External diffusion of Oz | Sh 8.1x1073 8.1x1073 8.1x103
gas to particle surface kg 1.1 m/s 1.1 m/s 1.1 m/s
a 0.013 s, Cu0
o T 0.025 o, CuO 0.013s 0.013s
o ; 8.2x10" m%s (r/R = 0.9) l
£ De 2.2x10" m%s - 1.4x10" m?/s
= 3.5x10 /s (rdR < 0.9
£ | Internal diffusion of Oz A AT i G /s (re )
T : 22X min, Cuy!
¢ | gasthroughoxideash | 4.2%10° min 4.3%10° min
o 8.4x10° min, CuO
800 s’ Cu,0 1 4
Chemical reaction of O, ke 97 s CuO ks Eoie
; 5
with metal core - 5.3x10™ s Cu20 54x10° s 54x10° s
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Fig. S13 Oxidation time (t) vs x of Cu particles with the assumption that the product of Cu oxidation is
Cuz0 (a) and CuO (b) at 300 °C. (c)-(d) Plots of oxidation time (t) vs x of CuSnges (c) and CuSng1 (d)
particles. x is a variable defined by Equation (S15). The internal diffusivity of O, through oxide ash layer
(De) is obtained by fitting the curves in (a-d) by Equation (S16). The oxidation is conducted in O,-He flow
with 1.4 vol % O,. The diffusion coefficients obtained are 10° — 10* higher than reported values for the
diffusion coefficients, which are 10" m%s for both situations of O through Cu,O and O, through SnO:
and at 300 °C.3. %
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Table S2. Variables used in modeling with their definitions and values

Variables Definition Value
8.9x10° kg/m?
pcu Density of Cu
1.4x10° mol/m? [°]
7.3x10° kg/m®
Psn Density of Cu
6.1x10* mol/m? [°]
6.0x10° kg/m®
Pcu20 Density of Cu,0O
4.2x10* mol/m?® [°]
R Mean radius of particles 355 nm [*]
dp Mean diameter of particles 710 nm [*]
b Porosity 0.4 7]
U Superficial velocity 6.5x10° m/s
Uo inlet gas flow rate 50 ml/min
3.6x10™* m¥s at 300 °C
v kinematic viscosity
6.1x10* m?/s at 500 °C [*]
0.65 cm?s at 300 °C
Das Gas-phase diffusivity
1.1 cm/s at 300 °C
Ac Cross-sectional area of pipe 1.3x10* m?
Mo2 Molecular weight of O, 32 g/mol
Mnz Molecular weight of N, 28 g/mol
P Pressure 1 atm
Vo2 Diffusion volume for O 16.6 [“]
Vnz Diffusion volume for N 17.9[*]
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Table S3. Parameters used in modeling with definitions

Parameter Definition Unit
t Oxidation time S or min
T Time for complete oxidation S
Stoichiometry of particle
b dimensionless
oxidation
Mass transfer coefficient
Kg m/s
between fluid and particle
0O gas concentration in the main
Cozg mol/m?
stream
re Radius of metal core nm
Effective diffusion coefficient
De m/s
of Oz in the ash layer
ky The first-order rate constant st
Sh Sherwood number dimensionless
Re Reynolds number dimensionless
Sc Schmidt number dimensionless
First order apparent rate
Kapp min™

coefficient
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