Electronic Supplementary Information

The synthesis of two long-chain N-hydroxy amino coumarin compounds and their applications in the analysis of aldehydes†

Zhaobing Guan,†a Manman Ding,†a Yao Sun,‡ Sisi Yu,‡ Ao Zhang,‡ Shuguang Xia,‡ Xiaosong Hu,*** and Yawei Lin***

Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China.
E-mail: xhu@whut.edu.cn, linyawei2012@whut.edu.cn

Table of Contents:

<table>
<thead>
<tr>
<th>1</th>
<th>1H & 13C NMR spectra of the compounds 3-5, 7a, 7b, 8a, 8b, 9a, 9b, 10a, 10b, 1a, 1b.</th>
<th>Page S1 – S14</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1H-1H COSY, 1H-13C HSQC of compounds 1a and 1b.</td>
<td>Page S15 – S16</td>
</tr>
<tr>
<td>3</td>
<td>LC-MS spectra of compounds 9a, 10a, 1a and 1b.</td>
<td>Page S17 – S18</td>
</tr>
<tr>
<td>4</td>
<td>Mass spectrum of the nitrone derivative which was generated from the reaction between furfural, 5-methylfurfural, 5-(hydroxymethyl)furfural and compound 1b (Fig. S35); Mass spectrum of the nitrone derivative which was generated from the reaction between hexanal and compound 1a (Fig. S36).</td>
<td>Page S19</td>
</tr>
<tr>
<td>5</td>
<td>Linear calibration range, regression equation, detection limit and reproducibility of furfural after nitrone formation (Table S1)</td>
<td>Page S20</td>
</tr>
</tbody>
</table>
Fig. S1 1H NMR spectrum of compound 3 (500 MHz, CDCl$_3$).

Fig. S2 13C NMR spectrum of compound 3 (125 MHz, CDCl$_3$).
Fig. S3 1H NMR spectrum of compound 4 (500 MHz, CDCl$_3$).

Fig. S4 13C NMR spectrum of compound 4 (125 MHz, CDCl$_3$).
Fig. S5 1H NMR spectrum of compound 5 (500 MHz, CDCl$_3$).

Fig. S6 13C NMR spectrum of compound 5 (125 MHz, CDCl$_3$).
Fig. S7 1H NMR spectrum of compound 7a (500 MHz, DMSO-d$_6$).

Fig. S8 13C NMR spectrum of compound 7a (125 MHz, DMSO-d$_6$).
Fig. S9 1H NMR spectrum of compound 7b (500 MHz, DMSO-d6).

Fig. S10 13C NMR spectrum of compound 7b (125 MHz, DMSO-d6).
Fig. S11 1H NMR spectrum of compound 8a (500 MHz, DMSO-d6).

Fig. S12 13C NMR spectrum of compound 8a (125 MHz, DMSO-d6).
Fig. S13 1H NMR spectrum of compound 8b (500 MHz, DMSO-d6).

Fig. S14 13C NMR spectrum of compound 8b (125 MHz, DMSO-d6).
Fig. S15 1H NMR spectrum of compound 9a (500 MHz, DMSO-d_6).

Fig. S16 13C NMR spectrum of compound 9a (125 MHz, DMSO-d_6).
Fig. S17 ¹H NMR spectrum of compound 9b (500 MHz, DMSO-d6).

Fig. S18 ¹³C NMR spectrum of compound 9b (125 MHz, DMSO-d6).
Fig. S19 1H NMR spectrum of compound 10a (500 MHz, DMSO-d6).

Fig. S20 13C NMR spectrum of compound 10a (125 MHz, DMSO-d6).
Fig. S21 1H NMR spectrum of compound 10b (500 MHz, DMSO-d_6).

Fig. S22 13C NMR spectrum of compound 10b (125 MHz, DMSO-d_6).
Fig. S23 1H NMR spectrum of compound 1a (500 MHz, DMSO-d$_6$)

Fig. S24 13C NMR spectrum of compound 1a (125 MHz, DMSO-d$_6$).
Fig. S25 1H NMR spectrum of compound 1b (500 MHz, DMSO-d_6).

Fig. S26 13C NMR spectrum of compound 1b (125 MHz, DMSO-d_6).
Fig. S27 1H-1H COSY spectrum compound 1a (500 MHz, DMSO-d6).

Fig. S28 1H-13C HSQC spectrum compound 1a (500 MHz, DMSO-d6).
Fig. S2 1H-1H COSY spectrum compound 1b (500 MHz, DMSO-d6).

Fig. S30 1H-13C HSQC spectrum compound 1b (500 MHz, DMSO-d6).
Fig. S31 LC-MS spectrum of compound 9a, MW = 232, M/Z = 233, [M+H]+.

Fig. S32 LC-MS spectrum of compound 10a, MW = 247, M/Z = 248, [M+H]+; M/Z = 270, [M+Na]+.
Fig. S33 LC-MS spectrum of compound 1a, MW = 249, M/Z = 250, [M+H]+; M/Z = 272, [M+Na]+.

Fig. S34 LC-MS spectrum of compound 1b, MW = 263, M/Z = 264, [M+H]+; M/Z = 286, [M+Na]+.
Fig. S35 Mass spectrum of the nitrone derivative which was generated from the reaction between 5-methylfurfural and compound 1a.

Fig. S36 Mass spectrum of the nitrone derivative which was generated from the reaction between hexanal and compound 1a.
Table S1 Linear calibration range, regression equation, detection limit and reproducibility of furfural after nitrone formation

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Dynamic Range (nM)</th>
<th>Linearity</th>
<th>LOD(^a) (nM)</th>
<th>RSD(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furfural</td>
<td>8-1600</td>
<td>Y=6.77×10^3X+4.32×10^4</td>
<td>0.9965</td>
<td>1.6</td>
</tr>
</tbody>
</table>

\(^a\)S/N = 3, per 20 μL injection volume.

\(^b\)n=6.

\(^c\)X: furfural concentration (nM), Y: peak area (mV • min)