Supplementary Materials for

“Sintering of Multiple Cu-Ag Core-Shell Nanoparticles and Properties of Nanoparticle-Sintered Structures”

Jiaqi Wang and Seungha Shin*

Department of Mechanical, Aerospace and Biomedical Engineering,
The University of Tennessee, Knoxville, Tennessee, 37996-2210,
United States.

*Corresponding author: sshin@utk.edu
Phone: (865) 974-7886
Figure S1: Final Morphology of sintered multiple-CS-NP model Ag$_5$Cu$_{2.5}$ at different temperatures (T's). The pores are not eliminated under T of 500 K. As T increases from 600 K to 900 K, the porosity gradually decreases, thus a more densified structure is obtained, but still some pores are left inside within the sintered structures. At 1000 K, the whole system melts, the core-shell structure is collapsed and a Cu-Ag alloy is obtained. Color scheme is explained as: Blue: Ag FCC; Yellow: Ag HCP; Red: Ag amorphous; Green: Cu FCC; Magenta: Cu HCP; Cyan: Cu amorphous.
Figure S2: Mean square displacement ($\langle d^2 \rangle$) during the sintering of multiple-CS-NP structures with (a) Ag$_8$Cu$_4$ and (b) Ag$_{11}$Cu$_{5.5}$, respectively. Cross-sectional images of multiple-CS-NP structures with (c) Ag$_8$Cu$_4$ and (d) Ag$_{11}$Cu$_{5.5}$ at critical T's. Slow solid diffusion can be observed at 900 K in (a) while no solid diffusion can be observed after the liquid diffusion of surface premelted atoms at surface premelting temperature (T_{sm}) 1100 K. However, continuous diffusion is observed at both 1100 K and 1160 K in multiple-CS-NP Ag$_{11}$Cu$_{5.5}$ due to the continuous pore narrowing. Pores are eliminated at T_{sm} (1100 K) in multiple-CS-NP structures with Ag$_8$Cu$_4$; thus, no solid diffusion can be observed in (a). However, for Ag$_{11}$Cu$_{5.5}$, pores survive even at T_{sm} (1160 K), causing continuous solid diffusion following by initial liquid diffusion. The Ag shell atoms are colored with green, while the Cu core atoms are colored with blue.
Figure S3: Final sintered structure of multiple Ag$_5$Cu$_9$ NPs (pure Ag NPs) at 600 K. Pores are not eliminated at this T, while the pores do not survive in multiple CS NPs at 600 K, which proves that the interfacial atoms have higher mobility in CS NP and contribute to a higher densification.
Figure S4: Mean square displacement ($\langle d^2 \rangle$) of the (a) surface and (b) shell atoms during the sintering of multiple Ag$_5$Cu$_{2.5}$ NPs. The self-diffusivity (in the unit of Å2/ps) obtained by linear fitting is also shown after each T. The dots in each curve represent the starting and ending points, during which the $\langle d^2 \rangle$ is used to calculate the self-diffusivity and activation energy.
Figure S5: Stress-strain plots for structures sintered by multiple NPs (a) Ag$_5$Cu$_0$, (b) Ag$_5$Cu$_{2.5}$, (c) Ag$_8$Cu$_4$, and (d) Ag$_{11}$Cu$_{5.5}$ at different T's. Note that all tensile simulations are performed at 300 K, i.e., the final sintered structures are quenched to 300 K before executing the tensile simulations.
Figure S6: Potential energy (E_p) evolution during the quenching process of the sintered structures of multiple NPs (a) Ag$_5$Cu$_0$, (b) Ag$_5$Cu$_{2.5}$, (c) Ag$_8$Cu$_4$, and (d) Ag$_{11}$Cu$_{5.5}$. No steep decrease of E_p is observed in these curves, indicating the formation of metallic glass after the quenching process.
Figure S7: Plots of \((-\Delta \frac{V}{V_0} - \Delta \rho)\) of structures sintered by multiple NPs (a) Ag₅Cu₀, (b) Ag₅Cu₂.₅, (c) Ag₈Cu₄, and (d) Ag₁₁Cu₅.₅ at different T's. Isothermal compressibility is the slope of the linear fitting lines.
Figure S8: Plots of $(\Delta V/V_0 - \Delta T)$ of structures sintered by multiple NPs (a) Ag$_5$Cu$_0$, (b) Ag$_5$Cu$_{2.5}$, (c) Ag$_8$Cu$_4$, and (d) Ag$_{11}$Cu$_{5.5}$ at different T's. Coefficient of thermal expansion is the slope of the linear fitting lines.