Supplementary information for

Heterogeneous Fenton-like Degradation of Phenanthrene Catalyzed by Schwertmannite Biosynthesized Using Acidithiobacillus ferrooxidans

Xiaoqing Meng, Su Yan, Wenzhu Wu, Guanyu Zheng, Lixiang Zhou

*Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
\bJiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
\cNanjing Institute of Environmental Science, Ministry of Environmental Protection of PRC, Nanjing 210042, China

*Corresponding author. Tel./fax: +86 25 84395160.
E-mail address: gyzheng@njau.edu.cn (G. Zheng)

This supporting information contains a 7-page document, including the detailed descriptions of the preparation of chemosynthetic schwertmannite and chemosynthetic goethite, 4 figures, 1 tables and this cover page.
Text S1. Preparation of chemosynthetic schwertmannite and chemosynthetic goethite

Chemosynthetic schwertmannite was prepared using the chemically oxidative synthesis method. Briefly, 1.80 mL of 30% (v/v) H₂O₂ was added into 150 mL of 160 mmol/L FeSO₄·7H₂O solution. The flasks were then incubated for 24 h at 180 rpm and 28 °C in a rotary shaker. Then the precipitates formed in the flasks were collected through filtering with Whatman No. 4 filter paper and dried at 50°C to a constant weight. Chemosynthetic goethite was prepared in the laboratory according to the followed method. Firstly, the pH of a 0.2 M Fe(NO₃)₃ solution was adjusted to 11.0 with 0.2 M NaOH and then incubated at 180 rpm and 22°C for 48 h in a rotary shaker. After heating in a water bath at 90 °C for 16 h followed by repeated rinsing of the solids with deionized water, the solids were dried for 16 h at 70 °C to a constant weight.
Fig. S1 SEM images of the chemosynthetic schwertmannite particles: \(\times 2000 \) (a) and \(\times 20000 \) (b).
Fig. S2 GC-MS chromatograms of extracts of phenanthrene degradation catalyzed by biosynthetic schwertmannite after (a) 0 h, (b) 1 h and (c) 5 h reaction time. Experimental conditions: [phenanthrene]₀ = 1 mg/L, [H₂O₂]₀ = 200 mg/L, and solution initial pH = 3.0.
Fig. S3 Mass spectra of Product G (retention time of 26.192 or 26.342 min, $m/z = 405$).
Fig. S4 FTIR analyses of newly biosynthetic schwertmannite and the schwertmannite after being used for 12 cycles. Experimental conditions were [phenanthrene]₀ = 1 mg/L, [schwertmannite]₀ = 1 g/L, [H₂O₂]₀ = 200 mg/L, solution initial pH = 3.0, and reaction time of 12 h in each cycle.
Table S1 Binding energy of Fe 2p, and Fe$^{2+}$ and Fe$^{3+}$ surface concentration on the biosynthetic schwertmannite catalyst before and after phenanthrene degradation.

<table>
<thead>
<tr>
<th></th>
<th>Binding Energy (eV)</th>
<th>Fe$^{2+}$ surface concentration (%)</th>
<th>Fe$^{3+}$ surface concentration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2p$_{1/2}$</td>
<td>2p$_{1/3}$</td>
<td>2p$_{1/2}$</td>
</tr>
<tr>
<td>Before</td>
<td>710.9</td>
<td>724.4</td>
<td>712.5</td>
</tr>
<tr>
<td>After</td>
<td>711.3</td>
<td>724.7</td>
<td>712.9</td>
</tr>
</tbody>
</table>