Aloe-vera assisted facile green synthesis of reduced graphene oxide for improved electrochemical and dye removal applications

Gourav Bhattacharyaa, Shrawni Sasb Shikha Wadhwab* Ashish Mathurb, James McLaughlinc, Susanta Sinha Roya*

aDepartment of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar 201314, Uttar Pradesh, India.
bAmity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida-201313, India.
cNanotechnology and Integrated Bioengineering Centre, Jordanstown Campus, University of Ulster, Newtownabbey, BT37 OQB, Northern Ireland, United Kingdom.

*E-mail: susanta.roy@snu.edu.in

Electronic Supplementary Information (EIS) available
Fig. S1. TEM images of GO (top left) and rGO-7.5 samples (bottom left). The corresponding SAED patterns are represented in the right side.
Fig. S2. Adsorption capacity of Methylene blue over GO and rGO-7.5.
Fig. S3. Plot of log \((q_{e/\text{expt}}-q_e)\) vs. time for adsorption of MB over (a) GO (b) rGO-7.5.
Fig. S4. Plot of q_t vs. $t^{1/2}$ for adsorption of MB over GO and rGO-7.5.
Fig. S5. Plot of B_t vs. t for adsorption of MB over GO and rGO-7.5.