Supplementary Information

Chroman-4-one and pyrano[4, 3-b]chromenone derivatives from the mangrove endophytic fungus *Diaporthe phaseolorum* SKS019

Hui Cui, a Meng Ding, a Dane Huang, b Zhengrui Zhang, a Huiting Liu, a Hongbo Huang, *c* and Zhigang She*a*

a School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.

b School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510080, China.

c CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong. Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.

* To whom correspondence should be addressed. Tel/Fax: +86-20-34066449 (H. H.); +86-20-84113356 (Z. S.). E-mail: huanghb@scsio.ac.cn (H. H.); cesszhg@sysu.edu.cn (Z. S.).
Contents

Figure S1 HRESIMS of diaporchromanone A (1)
Figure S2 1H NMR spectrum (500 MHz, CDCl$_3$) of diaporchromanone A (1)
Figure S3 13C NMR spectrum (125 MHz, CDCl$_3$) of diaporchromanone A (1)
Figure S4 DEPT NMR spectrum (125 MHz, CDCl$_3$) of diaporchromanone A (1)
Figure S5 1H-1H COSY spectrum (500 MHz, CDCl$_3$) of diaporchromanone A (1)
Figure S6 HSQC spectrum (500 MHz, CDCl$_3$) of diaporchromanone A (1)
Figure S7 HMBC spectrum (500 MHz, CDCl$_3$) of diaporchromanone A (1)

Figure S8 HRESIMS of diaporchromanone B (2)
Figure S9 1H NMR spectrum (500 MHz, CDCl$_3$) of diaporchromanone B (2)
Figure S10 13C NMR spectrum (125 MHz, CDCl$_3$) of diaporchromanone B (2)
Figure S11 1H-1H COSY spectrum (500 MHz, CDCl$_3$) of diaporchromanone B (2)
Figure S12 HSQC spectrum (500 MHz, CDCl$_3$) of diaporchromanone B (2)
Figure S13 HMBC spectrum (500 MHz, CDCl$_3$) of diaporchromanone B (2)

Figure S14 HRESIMS of diaporchromanone C (3)
Figure S15 1H NMR spectrum (500 MHz, CDCl$_3$) of diaporchromanone C (3)
Figure S16 13C NMR spectrum (125 MHz, CDCl$_3$) of diaporchromanone C (3)
Figure S17 1H-1H COSY spectrum (500 MHz, CDCl$_3$) of diaporchromanone C (3)
Figure S18 HSQC spectrum (500 MHz, CDCl$_3$) of diaporchromanone C (3)
Figure S19 HMBC spectrum (500 MHz, CDCl$_3$) of diaporchromanone C (3)

Figure S20 HRESIMS of diaporchromanone D (4)
Figure S21 1H NMR spectrum (500 MHz, CDCl$_3$) of diaporchromanone D (4)
Figure S22 13C NMR spectrum (125 MHz, CDCl$_3$) of diaporchromanone D (4)
Figure S23 1H-1H COSY spectrum (500 MHz, CDCl$_3$) of diaporchromanone D (4)
Figure S24 HSQC spectrum (500 MHz, CDCl$_3$) of diaporchromanone D (4)
Figure S25 HMBC spectrum (500 MHz, CDCl$_3$) of diaporchromanone D (4)

Figure S26 HRESIMS of (−)-phomopsichin A (5a)
Figure S27 1H NMR spectrum (500 MHz, acetone-d_6) of (−)-phomopsichin A (5a)
Figure S28 13C NMR spectrum (125 MHz, acetone-d_6) of (−)-phomopsichin A (5a)
Figure S29 1H-1H COSY spectrum (500 MHz, acetone-d_6) of (−)-phomopsichin A (5a)
Figure S30 HSQC spectrum (500 MHz, acetone-d_6) of (−)-phomopsichin A (5a)
Figure S31 HMBC spectrum (500 MHz, acetone-d_6) of (−)-phomopsichin A (5a)

Figure S32 HRESIMS of (+)-phomopsichin B (6a)
Figure S33 1H NMR spectrum (500 MHz, CDCl$_3$) of (+)-phomopsichin B (6a)
Figure S34 13C NMR spectrum (125 MHz, CDCl$_3$) of (+)-phomopsichin B (6a)
Figure S35 1H-1H COSY spectrum (500 MHz, CDCl$_3$) of (+)-phomopsichin B (6a)
Figure S36 HSQC spectrum (500 MHz, CDCl$_3$) of (+)-phomopsichin B (6a)
Figure S37 HMBC spectrum (500 MHz, CDCl$_3$) of (+)-phomopsichin B (6a)

Figure S38 HRESIMS of (±)-diaporchromone A (7)
Figure S39 1H NMR spectrum (500 MHz, CDCl$_3$) of (±)-diaporchromone A (7)
Figure S40 13C NMR spectrum (125 MHz, CDCl$_3$) of (±)-diaporchromone A (7)
Figure S41 HSQC spectrum (500 MHz, CDCl₃) of (±)-diaporchromone A (7)
Figure S42 HMBC spectrum (500 MHz, CDCl₃) of (±)-diaporchromone A (7)
Figure S43 ECD Calculation section
Figure S1 HRESIMS of diaporchromanone A (1)

Elemental Composition Report
Single Mass Analysis
Tolerance = 4.0 PPM / DBE: min = -1.5, max = 50.0
Elements Used:
C: 0-50 H: 0-100 O: 0-50

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>307.0818</td>
<td>307.0818</td>
<td>0.0</td>
<td>0.0</td>
<td>8.5</td>
<td>C_{15} H_{15} O_{7}</td>
</tr>
</tbody>
</table>
Figure S2 1H NMR spectrum (500 MHz, CDCl$_3$) of diaporchromanone A (1)

A (d) 6.46
B (d) 6.38
C (dd) 4.55
D (ddd) 4.49
E (dd) 4.42
F (s) 3.93
G (dt) 2.90
J (s) 2.19
H (dd) 2.74
I (dd) 2.74

Figure S3 13C NMR spectrum (125 MHz, CDCl$_3$) of diaporchromanone A (1)

C13CPD CDCl3 (E:\Data\2016) nmrsu 1

31.03 46.91 49.60 53.35 66.50 68.55 104.68 110.44 112.02 136.27 163.03 163.95 170.50 190.96 209.22
Figure S4 DEPT NMR spectrum (125 MHz, CDCl$_3$) of diaporchromanone A (1)

Figure S5 1H- 1H COSY spectrum (500 MHz, CDCl$_3$) of diaporchromanone A (1)
Figure S6 HSQC spectrum (500 MHz, CDCl₃) of diaporchromanone A (1)

Figure S7 HMBC spectrum (500 MHz, CDCl₃) of diaporchromanone A (1)
Figure S8 HRESIMS of diaporchromanone B (2)

Elemental Composition Report
Single Mass Analysis
Tolerance = 4.0 PPM / DBE: min = -1.5, max = 50.0
Elements Used:
C: 0-50 H: 0-100 O: 0-50

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>307.0810</td>
<td>307.0818</td>
<td>-0.8</td>
<td>-2.6</td>
<td>8.5</td>
<td>C_{15} H_{15} O_{7}</td>
</tr>
</tbody>
</table>
Figure S9 1H NMR spectrum (500 MHz, acetone-d_6) of diaporchromanone B (2)

Figure S10 13C NMR spectrum (125 MHz, acetone-d_6) of diaporchromanone B (2)
Figure S11 1H- 1H COSY spectrum (500 MHz, CDCl$_3$) of diaporchromanone B (2)

Figure S12 HSQC spectrum (500 MHz, CDCl$_3$) of diaporchromanone B (2)
Figure S13 HMBC spectrum (500 MHz, CDCl₃) of diaporchromanone B (2)

Elemental Composition Report
Single Mass Analysis
Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0
Elements Used: C: 0-50 H: 0-100 O: 0-50

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>321.0970</td>
<td>321.0974</td>
<td>-0.4</td>
<td>-1.2</td>
<td>8.5</td>
<td>C₁₆H₁₇O₇</td>
</tr>
</tbody>
</table>
Figure S15 1H NMR spectrum (500MHz, CDCl$_3$) of diaporchromanone C (3)

Figure S16 13C NMR spectrum (125 MHz, CDCl$_3$) of diaporchromanone C (3)
Figure S17 1H-1H COSY spectrum (500 MHz, CDCl$_3$) of diaporchromanone C (3)

Figure S18 HSQC spectrum (500 MHz, CDCl$_3$) of diaporchromanone C (3)
Figure S19 HMBC spectrum (500 MHz, CDCl$_3$) of diaporchromanone C (3)

Figure S20 HRESIMS of diaporchromanone D (4)

Elemental Composition Report
Single Mass Analysis
Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0
Elements Used: C: 0-50 H: 0-100 O: 0-50
Mass Calc. Mass mDa PPM DBE Formula
321.0973 321.0974 -0.1 -0.3 8.5 C$_{16}$H$_{17}$O$_7$
Figure S21 1H NMR spectrum (500 MHz, CDCl$_3$) of diaporchromanone D (4)

Figure S22 13C NMR spectrum (125 MHz, CDCl$_3$) of diaporchromanone D (4)
Figure S23 1H-1H COSY spectrum (500 MHz, CDCl$_3$) of diaporchromanone D (4)

[Image of the COSY spectrum]

Figure S24 HSQC spectrum (500 MHz, CDCl$_3$) of diaporchromanone D (4)

[Image of the HSQC spectrum]
Figure S25 HMBC spectrum (500 MHz, CDCl₃) of diaporochromanone D (4)

Figure S26 HRESIMS of (−) phomopsichin A (5a)

Elemental Composition Report
Single Mass Analysis
Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>319.0818</td>
<td>319.0818</td>
<td>0.0</td>
<td>0.0</td>
<td>9.5</td>
<td>C₁₆H₁₅O₇</td>
</tr>
</tbody>
</table>
Figure S27 1H NMR spectrum (500 MHz, acetone-d_6) of (−)-phomopsichin A (5a)

Figure S28 13C NMR spectrum (125 MHz, acetone-d_6) of (−)-phomopsichin A (5a)
Figure S29 1H-1H COSY spectrum (500 MHz, acetone-d_6) of (−)-phomopsichin A (5a)

Figure S30 HSQC spectrum (500 MHz, acetone-d_6) of (−)-phomopsichin A (5a)
Figure S31 HMBC spectrum (500 MHz, acetone-d_6) of (−)-phomopsichin A (5a)

Figure S32 HRESIMS of (+)-phomopsichin B (6a)

Elemental Composition Report
Single Mass Analysis
Tolerance = 4.0 PPM DBE: min = -1.5, max = 50.0
C: 0-50 H: 0-100 O: 0-50

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>349.0921</td>
<td>349.0923</td>
<td>-0.2</td>
<td>-0.6</td>
<td>9.5</td>
<td>$C_{17}H_{17}O_8$</td>
</tr>
</tbody>
</table>
Figure S33 1H NMR spectrum (500MHz, CDCl$_3$) of (+)-phomopsichin B (6a)

Figure S34 13C NMR spectrum (125 MHz, CDCl$_3$) of (+)-phomopsichin B (6a)
Figure S35 1H-1H COSY spectrum (500 MHz, CDCl$_3$) of (+)-phomopsichin B (6a)

Figure S36 HSQC spectrum (500 MHz, CDCl$_3$) of (+)-phomopsichin B (6a)
Figure S37 HMBC spectrum (500 MHz, CDCl$_3$) of (+)-phomopsichin B (6a)

Figure S38 HRESIMS of (±)-diaporchromone A (7)

Elemental Composition Report
Single Mass Analysis
Tolerance = 4.0 PPM / DBE: min = -1.5, max = 50.0
Monoisotopic Mass, Even Electron Ions
Elements Used:
C: 0-50 H: 0-100 O: 0-50
Mass Calc. Mass mDa PPM Formula

1603A01157_S-8a3/7
1603A01157_S-8a3
HMBCGPND CDCl3 [E:\Data\2016] nmrsu 6

SYNAPT G2-SiHGA489
160422-S-9c 31 (0.134) Cm (29/35)
Figure S39 1H NMR spectrum (500 MHz, CDCl$_3$) of (±)-diaporchromone A (7)

Figure S40 13C NMR spectrum (125 MHz, CDCl$_3$) of (±)-diaporchromone A (7)
Figure S41 HSQC spectrum (500 MHz, CDCl$_3$) of (±)-diaporchromone A (7)

Figure S42 HSQC spectrum (500 MHz, CDCl$_3$) of (±)-diaporchromone A (7)
Conformational analysis was initially performed using Confab [1] at MMFF94 force field for one of the relative configurations for each compound. The conformers with Boltzmann-population of over 1% were chosen for ECD calculations. The energies and populations of all dominative conformers were provided in Table 1. The theoretical calculation was carried out using Gaussian 09 [2]. First, the chosen conformer was optimized at B3LYP/6-311+g(2d,p) level, and conformers with low Boltzmann-populations were filtered. Then, the remaining conformers were further optimized at B3LYP/6-311+g(2d,p) in MeOH using the IEFPCM polarizable conductor calculation model. The theoretical calculation of ECD was conducted in MeOH using Time-dependent Density functional theory (TD-DFT) at the CAM-B3LYP/6-311+g(2d,p) level for compound 1. Rotatory strengths for a total of 50 excited states were calculated. ECD spectra were generated using the program SpecDis 1.6 (University of Würzburg, Würzburg, Germany) and GraphPad Prism 5 (University of California San Diego, USA) from dipole-length rotational strengths by applying Gaussian band shapes with sigma = 0.2 eV [3]. All calculations were performed with the High-Performance Grid Computing Platform of Sun Yat-sen University.

Table 1 The low energy conformers of the compound 1.

<table>
<thead>
<tr>
<th>Conformers</th>
<th>Low energy structure</th>
<th>ΔE (Kcal/mol)</th>
<th>Boltzmann Dist (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-1-a</td>
<td></td>
<td>0</td>
<td>63</td>
</tr>
<tr>
<td>RS-1-b</td>
<td></td>
<td>0.04</td>
<td>37</td>
</tr>
</tbody>
</table>
RR-1-a

RR-1-b

SR-1

SS-1-a

SS-1-b

References

