Supplementary Information

Enhanced activity of CuO/K$_2$CO$_3$/MgAl$_2$O$_4$ catalyst for lean NO$_x$ storage and reduction at high temperatures

Yaoyao Liu,a Lihong Guo,a,b Dongyue Zhao,a Xingang Li,*,a Zhongnan Gao,a

Tong Ding,*,a Ye Tian,a Zheng Jiang,c

a Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China

b School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China

c Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China

*Corresponding author:

Prof. Xingang Li

E-mail: xingang.li@tju.edu.cn
Figure S1. Isothermal NO\textsubscript{x} storage curves of the catalysts at 450 °C.
Figure S2. N$_2$O concentration curve during the lean/rich cycles at 450 °C over CuO/K$_2$CO$_3$/MgAl$_2$O$_4$ catalyst.
Figure S3. SEM image of the fresh CuO/K$_2$CO$_3$/MgAl$_2$O$_4$ catalyst.