Experimental and computational study of the inclusion complexes of β-cyclodextrin with the chemical warfare agent soman (GD) and commonly used simulants

Mark R. Sambrook*, Jack C. Vincent*, Jayne A. Ede, Ian A. Gass and Peter J. Cragg*

a CBR Division, Dstl Porton Down, Salisbury, SP4 0JQ, UK. Email: msambrook@dstl.gov.uk; Tel.: +44 (0) 1980 952077

b School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, UK, Email: P.J.Cragg@brighton.ac.uk; Tel.: +44 (0) 1273 642037

RECEIVED DATA (to be inserted after manuscript is accepted)

General Materials and Methods

NMR spectra were obtained on a JEOL Eclipse+ 500 instrument (operating at 500 MHz for 1H and 202 MHz 31P spectra) or at 9.4 Tesla using a Bruker AVHD4 spectrometer operating at 400 MHz (1H) equipped with either a 5mm BBFO or TBO(19F) room temperature probehead. Data was recorded at 293 K and acquired using Bruker Topspin 3.5.

Samples of GD (soman) were sourced internally and confirmed by in-house methods as >99% pure. Deuterated solvents were purchased from Goss Scientific Instruments Ltd. and used as provided. All other chemical were purchased from Sigma Aldrich Ltd (UK) and used without further purification.

Example Job plot method:

Solutions of tri-isopropyl phosphate (6 mL, 5.77×10^{-3} mol dm$^{-3}$)* and β-cyclodextrin (6 mL, 5.77×10^{-3} mol dm$^{-3}$) were prepared in D$_2$O. These were then mixed in TiPP:β-CD solution volume ratios of 0:10, 1:9, 2:8 9:1 mL. A small aliquot (10 μL) of methanol D$_2$O solution was added to each sample before being transferred to NMR tubes (500 μL). 1H NMR spectra were referenced against methanol internal standard and the β-CD mole fraction plotted against mol fraction x Δδ (ppm).

* Concentrations of guest species were selected on the ability to easily dispense whole μL volumes, and thus, along with β-CD concentrations, vary slightly between guests (4.4×10^{-3} to 7.9 $\times 10^{-3}$ mol dm$^{-3}$).

Example NMR titration method:

A D$_2$O (20 mL) solution of β-CD (13.75 mg, 6.1×10^{-4} mol dm$^{-3}$)* was prepared and separated into 17 samples (1 mL). To the vials was added an aliquot of TiPP solution (0.03 mol dm$^{-3}$) of volume 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 50, 60, 80, 100, 140 and 200 μL to generate solutions with TiPP molar equivalents (compared to β-CD) of 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 4.0, 5.0, 7.0 and 10.0.** A small aliquot (10 μL) of methanol D$_2$O solution was added to each sample before being transferred to NMR tubes (500 μL). 1H NMR spectra were referenced against methanol internal standard and the chemical shift of the H-3 and H-5 β-CD internal cavity protons were monitored against changing TiPP concentration.
* Concentrations of guest species were selected on the ability to easily dispense whole μL volumes, and thus, along with β-CD concentrations, vary slightly between guests (6.1 x 10⁻⁴ to 4.4 x 10⁻³ mol dm⁻³).

** For titrants with greater water solubility (e.g. DIMP, GD) these aliquot volumes were decreased to 0, 2, 4, 6, 8, 10, 22, 24, 26, 28, 30, 35, 40, 50, 70 and 100 μL. The scale of molar equivalents remains the same.

All NMR titration data was fit using the software programme EQNMR.¹

Computational methods:

Calculations were undertaken using Spartan ‘16 Parallel Suite running on a Mac Pro with 3.5 GHz 6-Core Intel Xenon E5 processors and two threads per core.

β-CD proton numbering schematic²

Figure S1. Left: Proton numbering as shown for a disaccharide unit; right: schematic illustration of the internal and external cavity proton environments.
NMR spectra of GD, PMP and β-CD mixtures

Figure S2. 31P NMR spectrum of GD in D$_2$O (298 K).

Figure S3. 31P NMR spectrum of equimolar GD and β-cyclodextrin in D$_2$O (298 K).
Figure S4. 31P NMR of PMP in D$_2$O (298 K)

Figure S5. 31P NMR spectrum of equimolar PMP and β-cyclodextrin in D$_2$O (298 K).
NMR Job plot and Titration Data

Figure S6. Job plot analysis of β-CD H-3 environment with GD. \([\text{total}] = 6.5 \times 10^{-3} \text{ mol dm}^{-3}\), 293 K, D$_2$O.

Figure S7. Job plot analysis of β-CD H-5 environment with GD. \([\text{total}] = 6.5 \times 10^{-3} \text{ mol dm}^{-3}\), 293 K, D$_2$O.
Figure S8. 1H NMR titration of β-CD with GD monitoring the H-3 proton environment. [β-CD]$_{\text{initial}}$ = 1.1×10^{-3} mol dm$^{-3}$, 293 K, D$_2$O.

Figure S9. Data fitting of the 1H NMR titration of β-CD with GD monitoring the H-3 proton environment. [β-CD]$_{\text{initial}}$ = 1.1×10^{-3} mol dm$^{-3}$, 293 K, D$_2$O.
Figure S10. 1H NMR titration of β-CD with GD monitoring the H-5 proton environment. $[\beta\text{-CD}]_{\text{initial}} = 1.1 \times 10^{-3}$ mol dm$^{-3}$, 293 K, D$_2$O.

Figure S11. Data fitting of the 1H NMR titration of β-CD with GD monitoring the H-5 proton environment. $[\beta\text{-CD}]_{\text{initial}} = 1.1 \times 10^{-3}$ mol dm$^{-3}$, 293 K, D$_2$O.
Figure S12. Job plot analysis of β-CD H-5 environment with TEP. [total] = 7.9 x 10^{-3} mol dm^{-3}, 293 K, D_{2}O.

Figure S13. 1H NMR titration of β-CD with TEP monitoring the H-3 (r.h.s. triplet) proton environment. [β-CD]_{initial} = 4.4 x 10^{-3} mol dm^{-3}, 293 K, D_{2}O.
Figure S14. 1H NMR titration of β-CD with TEP monitoring the H-5 proton environment. [β-CD]$_{\text{initial}}$ = 4.4 \times 10$^{-3}$ mol dm$^{-3}$, 293 K, D$_2$O.

Figure S15. Data fitting of the 1H NMR titration of β-CD with TEP monitoring the H-5 proton environment. [β-CD]$_{\text{initial}}$ = 4.4 \times 10$^{-3}$ mol dm$^{-3}$, 293 K, D$_2$O.
Figure S16. Job plot analysis of β-CD H-3 environment with TnPP. [total] = 6.0 x 10^{-3} \text{ mol dm}^{-3}, 293 K, D_{2}O.

Figure S17. 1H NMR titration of β-CD with TnPP monitoring the H-3 proton environment. [β-CD]_{initial} = 6.3 x 10^{-3} \text{ mol dm}^{-3}, 293 K, D_{2}O.
Partial 1H NMR titration of β-CD with TnPP monitoring the H-5 proton environment up to 2.5 molar equivalents of TnPP added (clarity/resolution of individual proton environment challenging beyond 2.5 equivalents). $[β$-CD$]_{\text{initial}} = 6.0 \times 10^{-3}$ mol dm$^{-3}$, 293 K, D$_2$O.

Figure S18.

1H NMR titration of β-CD with TnPP monitoring the H-3 proton environment. $[β$-CD$]_{\text{initial}} = 6.0 \times 10^{-3}$ mol dm$^{-3}$, 293 K, D$_2$O.

Figure S19.
Figure S20. Job plot analysis of β-CD H-3 environment with TiPP. \([\text{total}] = 5.77 \times 10^{-3} \text{ mol dm}^{-3} \), 293 K, D_2O.

Figure S21. 1H NMR titration of β-CD with TiPP monitoring the H-3 proton environment. \([\beta-\text{CD}]_{\text{total}} = 6.1 \times 10^{-3} \text{ mol dm}^{-3} \), 293 K, D_2O.
Figure S22. Partial 1H NMR titration of β-CD with TiPP monitoring the H-5 proton environment up to 4.0 molar equivalents of TiPP added (clarity/resolution of individual proton environment challenging beyond 4.0 equivalents). $[\beta$-CD]$_{initial} = 6.0 \times 10^{-3}$ mol dm$^{-3}$, 293 K, D$_2$O.

Figure S23. 1H NMR titration of β-CD with TiPP monitoring the H-5 proton environment. $[\beta$-CD]$_{initial} = 6.0 \times 10^{-3}$ mol dm$^{-3}$, 293 K, D$_2$O.
Figure S24. Job plot analysis of β-CD H-3 environment with DEMP. [total] = 7.9×10^{-3} mol dm$^{-3}$, 293 K, D$_2$O.

Figure S25. Job plot analysis of β-CD H-3 environment with DIMP. [total] = 4.4×10^{-3} mol dm$^{-3}$, 293 K, D$_2$O.
Figure S26. Job plot analysis of 6-CD H-5 environment with DIMP. \([\text{total}] = 4.4 \times 10^{-3} \text{ mol dm}^{-3}, 293 \text{ K, } \text{D}_2\text{O.}\]

Figure S27. \(^1\)H NMR titration of 6-CD with DIMP monitoring the H-3 proton environment. \([6-\text{CD}]_{\text{initial}} = 4.4 \times 10^{-3} \text{ mol dm}^{-3}, 293 \text{ K, } \text{D}_2\text{O.}\)
Figure S28. 1H NMR titration of β-CD with DIMP monitoring the H-5 proton environment. $[\beta$-CD]$_{\text{initial}} = 4.4 \times 10^{-3}$ mol dm$^{-3}$, 293 K, D$_2$O.

Figure 29. Data fitting of the 1H NMR titration of β-CD with DIMP monitoring the H-5 proton environment. $[\beta$-CD]$_{\text{initial}} = 4.4 \times 10^{-3}$ mol dm$^{-3}$, 293 K, D$_2$O.
Figure S30. Job plot analysis of β-CD H-3 environment with PMP. \([\text{total}] = 7.9 \times 10^{-3} \text{ mol dm}^{-3}, 293 \text{ K}, D_2O.\)

Figure S31. 1H NMR titration of β-CD with PMP monitoring the H-3 proton environment. \([\text{β-CD}]_{\text{initial}} = 4.4 \times 10^{-3} \text{ mol dm}^{-3}, 293 \text{ K}, D_2O.\)
Figure S32. 1H NMR titration of β-CD with PMP monitoring the H-5 proton environment. $[\beta\text{-CD}]_{\text{initial}} = 4.4 \times 10^{-3}$ mol dm$^{-3}$, 293 K, D$_2$O.

Figure S33. Data fitting of the 1H NMR titration of β-CD with PMP monitoring the H-5 proton environment. $[\beta\text{-CD}]_{\text{initial}} = 4.4 \times 10^{-3}$ mol dm$^{-3}$, 293 K, D$_2$O.
References

Content includes material subject to © Crown Copyright (2015), Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@nationalarchives.gsi.gov.uk.