1

Supporting Information for

Site selective substitution and its influence on photoluminescence

properties of Sr0.8Li0.2Ti0.8Nb0.2O3 :Eu3+ phosphors

G.Jyothi; L.Sandhya Kumari; K.G.Gopchandran *

Department of Optoelectronics, University of Kerala, Thiruvananthapuram-695581, India.

*gopchandran@yahoo.com

Calculation procedure for Judd-Ofelt intensity parameters

The magnetic dipole transition rate is calculated using the equation,

$$A_{01} = \frac{64\pi^4 n^3 v_1^3 S_{md}}{3h(2J+1)} \tag{1}$$

where v_1 is the wave number of emission corresponding to the transition.

The values of Ω_2 and Ω_4 are determined using the relations,

$$\frac{A_{0J}}{A_{01}} = \frac{e^2 v_J^3 (n^2 + 2)^2}{9S_{md} v_1^3 n^2} \Omega_{\lambda} | < {}^5D_0 || U^{(\lambda)} ||^7 F_J > |^2$$
⁽²⁾

and

$$\frac{A_{0J}}{A_{01}} = \frac{\int I_J d\nu}{\int I_1 d\nu}$$
(3)

where $\int I_J d\nu$ is the integrated emission intensity of ${}^5D_0 \rightarrow {}^7F_J$ transition.

Figure S1 (a) XRD patterns and (b) expanded view of (110) reflection of $Sr_{0.95-x}Eu_{0.05}Li_xTi_{1-x}Nb_xO_3$ phosphors.

Figure S2 Raman spectra of (a) $SL_1:Sr_{0.8-x}Li_{0.2}Ti_{0.8}Nb_{0.2}O_3:xEu^{3+}$ and (b) $SL_2:$ $Sr_{0.8-x/2}Li_{0.2}Ti_{0.8-x/2}Nb_{0.2}O_3:xEu^{3+}$

Figure S3 The DR spectra and Inset: $[F(R_{\alpha})h\nu]^2$ versus band gap plots of SrTiO₃ (ST), Sr_{0.8}Li_{0.2}Ti_{0.8}Nb_{0.2}O₃ (SL), Sr_{0.68}Eu_{0.12}Li_{0.2}Ti_{0.8}Nb_{0.2}O₃ (SL₁c) and Sr_{0.74}Eu_{0.12}Li_{0.2}Ti_{0.74}Nb_{0.2}O₃ (SL₂c).

Figure S4 Excitation spectra of different samples monitored at 615 nm (a) SL_1 : $Sr_{0.8-x}Li_{0.2}Ti_{0.8}Nb_{0.2}O_3$: xEu^{3+} and (b) SL_2 : $Sr_{0.8-x/2}Li_{0.2}Ti_{0.8-x/2}Nb_{0.2}O_3$: xEu^{3+}

Figure S5 Emission spectra of SL₁: $Sr_{0.8-x}Li_{0.2}Ti_{0.8}Nb_{0.2}O_3:xEu^{3+}$ phosphors under (a) 465 nm and (b) 395 nm excitations

Figure S6 Emission spectra of SL₂:Sr_{0.8-x/2}Li_{0.2}Ti_{0.8-x/2}Nb_{0.2}O₃:xEu³⁺ phosphors under (a) 465 nm and (b) 395 nm excitations; insets, the expanded view of ${}^{5}D_{o} \rightarrow {}^{7}F_{1}$ and ${}^{5}D_{o} \rightarrow {}^{7}F_{2}$ transitions for the respective excitations.

Figure S7 Emission spectra of $Sr_{0.95-x}Eu_{0.05}Li_xTi_{1-x}Nb_xO_3$ phosphors under 465 nm excitation

Figure S8 Emission spectra of $Sr_{0.8}Li_{0.2}Ti_{0.8}Nb_{0.2}O_3$: Eu³⁺ phosphors in which Eu³⁺ substituted at Sr and Ti sites at different doping ratio, under 465 nm excitation.

Figure S9 The photoluminescence decay curves for ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition (615 nm) of (a) $Sr_{0.8-x}Eu_{x}Li_{0.2}Ti_{0.8}Nb_{0.2}O_{3}$ (SL₁) phosphors and (b) $Sr_{0.8-x/2}Eu_{x}Li_{0.2}Ti_{0.8-x/2}Nb_{0.2}O_{3}$ (SL₂) phosphors under 465 nm excitation.

 Table S1.
 Structural parameters of $Sr_{0.8-x}Li_{0.2}Ti_{0.8}Nb_{0.2}O_3:xEu^{3+}$ (SL₁) and

 $Sr_{0.8-x/2}Li_{0.2}Ti_{0.8-x/2}Nb_{0.2}O_3:xEu^{3+}$ (SL₂) phosphors.

Table S2. Band gap energy of $Sr_{0.8-x}Eu_xLi_{0.2}Ti_{0.8}Nb_{0.2}O_3$ (SL1) and $Sr_{0.8-x/2}Eu_xLi_{0.2}Ti_{0.8-x/2}Nb_{0.2}O_3$ (SL2) phosphors.

Figure S2

Figure S4

Figure S5

Figure S6

Figure S7

Table S1

Sample	$SL_1: Sr_{0.8-x}Eu_xLi_{0.2}Ti_{0.8}Nb_{0.2}O_3$				SL_2 : $Sr_{0.8-x/2}Eu_xLi_{0.2}Ti_{0.8-x/2}Nb_{0.2}O_3$			
	x=0.05	<i>x</i> =0.08	<i>x</i> =0.12	<i>x</i> =0.16	<i>x</i> =0.05	<i>x</i> =0.08	<i>x</i> =0.12	<i>x</i> =0.16
a (Å)	3.9100(1)	3.9064(1)	3.9021(1)	3.9006(1)	3.9129(1)	3.91400(5)	3.9159(1)	3.9175(1)
Rp (%)	11.43	10.44	13.76	12.01	10.27	9.1	12.19	10.97
Rwp (%)	14.9	14.34	15.86	14.84	14.06	12.23	15.21	12.68
χ2 %	1.6	1.9	1.6	1.9	1.6	1.8	1.5	1.7
Sr-O (Å)	2.7650(1)	2.7620(1)	2.7590 (2)	2.7580 (2)	2.7670 (3)	2.7680 (1)	2.7690 (2)	2.7710(1)
Ti-O (Å)	1.9550(1)	1.9530(1)	1.9510 (2)	1.9500 (2)	1.9560 (3)	1.9570 (1)	1.9580 (2)	1.9600(1)

Table S2

Band gap (eV)				
\mathbf{SL}_1	SL_2			
3.24	3.24			
3.23	3.27			
3.23	3.30			
3.23	3.31			
	Band ga SL ₁ 3.24 3.23 3.23 3.23			