Electronic supplementary information

Synthesis of aluminum complexes supported by 2-(1,10-phenanthrolin-2-yl)phenolate ligands and their catalysis in the ring-opening polymerization of cyclic esters

Xiang-Xin Zhenga and Zhong-Xia Wang*,a,b

a CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China. Tel: 86 551 63603043; E-mail: zxwang@ustc.edu.cn

b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.

Contents

1. MALDI-TOF mass spectrum (matrix: DCTB) of PLA. Figure S1

2. Methine region of homonuclear decoupled 1H NMR spectra of PLA. Figure S2

3. MALDI-TOF mass spectrum (matrix: DCTB) of PHB. Figure S3

4. 13C NMR spectrum of PHB. Figure S4

5. 1H NMR spectra of A-b-B copolymer. Figures S5-S6

6. The GPC curves of PCL and PCL-b-PLA copolymer catalyzed by 2f. Figure S7

7. 2D DOSY NMR (CDCl$_3$, 25 °C) of PCL-b-PLA. Figure S8

8. 1H NMR and 13C NMR spectra of compounds 1a-1d and 2a-2f. Figures S9-S28
Figure S1. MALDI-TOF mass spectrum (matrix: DCTB) of PLA catalyzed by 2b/BnOH (a, Table 2, entry 7) and 2f (b, Table 2, entry 12).
Figure S2. Homonuclear decoupled 1H NMR spectra (CDCl$_3$, 25°C) of the methine range of PLA obtained from rac-LA, (a) (Table 2, entry 1) $P_m = 0.48$; (b) (Table 2, entry 3) $P_m = 0.62$; (c) (Table 2, entry 14) $P_m = 0.77$.

Figure S3. MALDI-TOF mass spectrum (matrix: DCTB) of the polymer isolated from rac-β-BL polymerization (Table 3, entry 3).
Figure S4. 13C NMR spectrum (CDCl$_3$, 101 MHz, 25 °C) of PHB.

Figure S5. 1H NMR spectrum (CDCl$_3$, 400 MHz, 25 °C) of the PCL-b-PHB copolymer.
Figure S6. 1H NMR spectrum (CDCl$_3$, 400 MHz, 25 °C) of PHB-b-PLA

Figure S7. The GPC curves of PCL and PCL-b-PLA copolymer catalyzed by 2f. Conditions: [Cat.]$_0$:
$[\varepsilon$-CL]$_0$:[rac-LA]$_0$ = 1:100:100; [Cat.]$_0$ = 0.01 mol/L; solvent: toluene. When ε-CL monomer conversion approached to 99%, a 1/8 volume of sample was taken from the polymerization system for GPC test and rac-LA monomer was sequentially added into the reaction system to generate the block copolymer of PCL-b-PLA with 84.7% rac-LA conversion.
Figure S8. 2D DOSY NMR (CDCl₃, 25 °C) of PCL-b- PLA.

Figure S9. ¹H NMR spectrum (CDCl₃, 400 MHz, 25 °C) of complex 1a.
Figure S10. 13C NMR spectrum (CDCl$_3$, 101 MHz, 25 °C) of complex 1a.

Figure S11. 1H NMR spectrum (CDCl$_3$, 400 MHz, 25 °C) of complex 1b.
Figure S12. 13C NMR spectrum (CDCl$_3$, 101 MHz, 25 °C) of complex 1b.

Figure S13. 1H NMR spectrum (CDCl$_3$, 400 MHz, 25 °C) of complex 1c.
Figure S14. 13C NMR spectrum (CDCl$_3$, 101 MHz, 25 °C) of complex 1c.

Figure S15. 1H NMR spectrum (CDCl$_3$, 400 MHz, 25 °C) of complex 1d.
Figure S16. 13C NMR spectrum (CDCl$_3$, 101 MHz, 25 °C) of complex 1d.

Figure S17. 1H NMR spectrum (C$_6$D$_6$, 400 MHz, 25 °C) of complex 2a.
Figure S18. 13C NMR spectrum (CD$_6$D$_{18}$, 101 MHz, 25 °C) of complex 2a.

Figure S19. 1H NMR spectrum (CD$_6$D$_{18}$, 400 MHz, 25 °C) of complex 2b.
Figure S20. 13C NMR spectrum (C$_6$D$_6$, 101 MHz, 25 °C) of complex 2b.

Figure S21. 1H NMR spectrum (C$_6$D$_6$, 400 MHz, 25 °C) of complex 2c.
Figure S22. 13C NMR spectrum (C_6D_6, 101 MHz, 25 °C) of complex 2c.

Figure S23. 1H NMR spectrum (C_6D_6, 400 MHz, 25 °C) of complex 2d.
Figure S24. 13C NMR spectrum (C_6D_6, 101 MHz, 25 °C) of complex 2d.

Figure S25. 1H NMR spectrum (C_6D_6, 400 MHz, 25 °C) of complex 2e.
Figure S26. 13C NMR spectrum (C$_6$D$_6$, 101 MHz, 25 °C) of complex 2e.

Figure S27. 1H NMR spectrum (CDCl$_3$, 400 MHz, 25 °C) of complex 2f.
Figure S28. 13C NMR spectrum (CDCl$_3$, 101 MHz, 25 °C) of complex 2f.