Supplementary Information

Selective and colorimetric detection of Ba²⁺ ions in aqueous solutions using 11-mercaptoundecylphosphonic acid functionalized gold nanoparticles

Blanca A. García Grajeda,^a Samuel G. Soto Acosta,^a Sergio A. Aguila,^b Héctor Peinado Guevara,^a Marta E. Díaz-García,^c Adriana Cruz Enríquez^{a*} and José J. Campos-Gaxiola^{a*}

^aFacultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Fuente de Poseidón y Prol. A. Flores S/N, C.P. 81223, C.U. Los Mochis, Sinaloa, México. E-Mail: <u>gaxiolajose@uas.edu.mx</u> and <u>cruzadriana@uas.edu.mx</u>; Fax: (52) 668 8127641; Tel: (52) 668 8127641.

^bCentro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (CNyN-UNAM), Km. 107 CarreteraTijuana-Ensenada, Apartado Postal 14, C.P. 22800, Ensenada, Baja California, México.

^cDepartment of Physical and Analytical Chemistry, University of Oviedo Julián Clavería no. 8 primera planta c.p. 33006, Oviedo, Spain.

CONTENTS

Fig. S1. Absorbance ratio (A_{625}/A_{530}) of AuNPs-MPA in the presence of metal ions. Blue bars
represent the addition of single metal ion (100 μ M); red bars represent the mixture of Ba ²⁺ (100
$\mu M)$ with another metal ion (100 $\mu M)$ 2
Fig. S2. IR spectra (a) Functionalized AuNPs-MPA and (b) AuNPs-MPA detecting Ba ²⁺ ions
Fig. S3. Uv-vis spectra of (-) AuNPs-citrate and (-) AuNPs-citrate-Ba ²⁺
Fig. S4. TEM image of AuNPs-MPA evaluated at pH 3
Fig. S5. Effect of reaction time on the absorption ratio A625/A530 for AuNPs-MPA system in the
presence of various concentrations of Ba ²⁺ 4
Fig. S6. UV-vis spectra of AuNPs-MPA detecting Ba ²⁺ ions in (A) drinking water and (B) tap
water5
Fig. S7.Colorimetric response of (A) drinking water and (B) tap water5
Fig. S8. The linearity curve of the ratio of A_{625}/A_{530} versus Ba^{2+} concentration (A) drinking water
and (B) tap water6

Fig. S1. Absorbance ratio (A_{625}/A_{530}) of AuNPs-MPA in the presence of metal ions. Blue bars represent the addition of single metal ion (100 μ M); red bars represent the mixture of Ba²⁺ (100 μ M) with another metal ion (100 μ M).

Fig. S2. IR spectra (a) Functionalized AuNPs-MPA and (b) AuNPs-MPA detecting Ba²⁺ ions.

Fig. S3.Uv-vis spectra of (-) AuNPs-citrate and (-) AuNPs-citrate-Ba²⁺.

Fig. S4. TEM image of AuNPs-MPA evaluated at pH 3.

Fig. S5. Effect of reaction time on the absorption ratio A625/A530 for AuNPs-MPA system in the presence of various concentrations of Ba²⁺.

Fig. S6. UV-vis spectra of AuNPs-MPA detecting Ba²⁺ ions in (A) drinking water and (B) tap water.

Fig. S7.Colorimetric response of (A) drinking water and (B) tap water.

Fig. S8. The linearity curve of the ratio of A_{625}/A_{530} versus Ba^{2+} concentration (A) drinking water and (B) tap water.