Supporting Information

Ultra-selective Detection of Fe$^{2+}$ ion by Redox Mechanism Based on Fluorescent Polymerized Dopamine Derivatives

Taeuk An1, Namhun Lee1, Hong-Jun Cho2, Seongsoo Kim1, Dong-Sik Shin3*, Sang-Myung Lee1*

1Department of Chemical Engineering, Kangwon National University, Gangwon-do 24341, Republic of Korea
2School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
3Department of Chemical and Biological Engineering, Sookmyung Women’s University, Seoul 04310, Republic of Korea

‡ These authors contributed equally to this work.
Figure S1. (a) MALDI-TOF mass spectra of F-ODA (pH 7.4) and (b) the proposed chemical structures of the F-ODA.
Figure S2. The 1H NMR analysis (D$_2$O) of (a) pure dopamine and (b) F-ODA.
Figure S3. XPS spectra of polydopamine, (a) C1s, (b) N1s, and (c) O1s.
Figure S4. (a) Fluorescence spectra of F-ODA depending on the final concentration of NaOH and (b) maximum intensity of F-ODA upon the pH of reacting solution.
Figure S5. (a) A concise scheme for the experiment about effect of adding HCl. Normalized fluorescence spectra of (b) 5,6-dihydroxyindole-rich compound before and after centrifugation and (c) F-ODA supernatant and indole-5,6-quinone-rich compound.
Figure S6. Fluorescence spectra of F-ODA depending on the presence or absence of nitrogen purging to eliminate dissolved oxygen before adding HCl.
Figure S7. (a) The F-ODA decay curve measured at room temperature. (b) The plot of absorbance vs. area of fluorescence on anthracene (red dots) and F-ODA (black dots).
Figure S8. Redox potentials of half reactions triggered by adding Fe$^{2+}$ ion.
Figure S9. SEM-EDS results of (a) F-ODA (supernatant), (b) PDA (precipitate), and (c) F-ODA chelated with Fe$^{2+}$ ions.
\[aA + bB + n[e^-] + h[H^+] = cC + dD \]

\[E_h = E_0 + \frac{0.05916}{n} \log \left(\frac{(A)^a (B)^b}{(C)^c (D)^d} \right) - \frac{0.05916}{n} \rho H \]

Equation S1. Nernst Equation.