Electronic Supplementary Information

Luminescence properties and site occupancy of Ce\(^{3+}\) in \(\text{Ba}_2\text{SiO}_4\): a combined experimental and ab initio study

Litian Lin,\(^a\) Xiaoxiao Huang,\(^b\) Rui Shi,\(^a\) Weijie Zhou,\(^a\) Yan Huang,\(^c\) Jiuping Zhong,\(^a\)
Ye Tao,\(^c\) Jun Chen,\(^d\) Lixin Ning*,\(^b\) and Hongbin Liang*,\(^a\)

\(^a\) MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
\(^b\) Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, China
\(^c\) Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China
\(^d\) School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
Fig. S1 (a) The UV-vis emission ($\lambda_{\text{ex}} = 315, 325, 335, 345, \text{ and } 350 \text{ nm}$) and (b) UV excitation spectra ($\lambda_{\text{em}} = 360, 376, 405, \text{ and } 430 \text{ nm}$) of $\text{Ba}_{1.9995}\text{Ce}_{0.0005}\text{SiO}_4$ at 4 K.

Fig. S2 Luminescence decay curves ($\lambda_{\text{ex}} = 325 \text{ nm}; \lambda_{\text{em}} = 360, 375, 405, 420, \text{ and } 450 \text{ nm}$) of $\text{Ba}_{1.9995}\text{Ce}_{0.0005}\text{SiO}_4$ at 4 K.