A new near-infrared ratiometric fluorescent probe for hydrazine

Yangyang He, a,b Zhanxian Li, b Bingjie Shi, b Zhen An, b Mingming Yu, b Liuhe Wei, b Zhonghai Ni*, a

a School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, China
b College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China

* Corresponding author
E-mail: nizhonghai@cumt.edu.cn.
Fig. S1 Absorbance of compound 1 [1.0×10^{-5} M in 5:5 (v/v) 0.01M HEPES/DMSO pH 7.4] (black circle) as a function of addition of hydrazine water solution. A_{418} and A_{584} represent the absorbance at 418 nm and 584 nm. The reaction time is 24 hour.

Fig. S2 The relationship of ratiometric fluorescence change of probe 1 [1.0×10^{-5} M in 5:5 (v/v) 0.01M HEPES/DMSO, pH 7.4] with the concentration of hydrazine upon excitation at 450 nm. I_{510} and I_{660} represent the emission intensity of probe 1 at 510 nm and 660 nm respectively.
Fig. S3 The relationship of fluorescence change at 660 nm of probe 1 [1.0 × 10⁻⁵ M in 5:5 (v/v) 0.01M HEPES/DMSO pH 7.4] with the concentration of hydrazine upon excitation at 5100 nm. I_{660} represents the emission intensity of probe 1 at 660 nm.

Fig. S4 HRMS spectrum of probe 1.
Fig. S5 HRMS spectrum of probe 1 reaction with hydrazine.

Fig. S6 Fluorescence responses of 1 [1.0 × 10^{-5} M in 5:5 (v/v) 0.01M HEPES/DMSO pH 7.4] upon addition of different species (100 equiv of species relative to 1) (green bars) with excitation at 450 nm, and fluorescence changes of the mixture of 1 and hydrazine (1.0 × 10^{-3} M in water) after addition of an excess of the indicated species (100 equiv relative to 1) (red bars) with excitation at 450 nm. I_{510} and I_{660} represent the emission intensity at 510 nm. Intensity means the emission intensity at 660 nm. The species used were thiourea, triethylamine, N,N-diisopropylethylamine, ammonia water, carbamide, aniline.
Fig. S7 Fluorescence responses of 1 \([1.0 \times 10^{-5} \text{ M in 5:5 (v/v) 0.01M HEPES/DMSO pH 7.4}]\) upon addition of different species (100 equiv of species relative to 1) (green bars) with excitation at 580 nm, and fluorescence changes of the mixture of 1 and hydrazine \((1.0 \times 10^{-3} \text{ M in water})\) after addition of an excess of the indicated species (100 equiv relative to 1) (red bars) with excitation at 580 nm. \(I_{660}\) represent the emission intensity at 660 nm. Intensity means the emission intensity at 660 nm. The species used were thiourea, triethylamine, N,N-diisopropylethylamine, ammonia water, carbamide, aniline.

Fig. S8 \(^1\text{H}\) NMR spectrum of compound 4.
Fig. S9 13C NMR spectrum of compound 4.

Fig. S10 1H NMR spectrum of compound 3.
Fig. S11 13C NMR spectrum of compound 3.

Fig. S12 1H NMR spectrum of compound 2.
Fig. S13 13C NMR spectrum of compound 2.

Fig. S14 1H NMR spectrum of compound 1.
Fig. S15 13C NMR spectrum of compound 1.