Supporting Information

Ligand-free Pd(0)/SiO$_2$-catalyzed aminocarbonylation of aryl iodides to amides at atmospheric CO pressure

Qinhua Hu, Lele Wang, Chen Wang, Yubin Wu, Zhengxin Ding and Rusheng Yuan

State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China

Table S1 and Scheme S1..1
NMR Spectra of the Isolated Target Products ..2-26
Mass Spectra of the Extended Reactions ..27
Mass Spectra of the Products for Different Reactions ...28-30
Table S1 Amide amount in the supernatant and DMSO eluent of solid catalyst for different reaction time.^a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Time (h)</th>
<th>Amount of amide in DMSO eluent (μmol)</th>
<th>Amount of amide in the supernatant (μmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24</td>
<td>trace</td>
<td>388</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>72</td>
<td>308</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>84</td>
<td>288</td>
</tr>
<tr>
<td>4</td>
<td>44</td>
<td>86</td>
<td>288</td>
</tr>
</tbody>
</table>

(a) Reaction conditions: iodobenzene (0.4 mmol, 1 equiv.), aniline (2 mL), and CO (1 atm), 1 wt% Pd/SiO₂ (0.5 mol%), K₂CO₃ (2 equiv.), reaction temperature: 80 °C, no solvent. Yields based on GC analysis.

Scheme S1

Discussion. we detected the chemical compounds in the supernatant and DMSO eluent of solid catalyst (Scheme S1). After 24 h of reaction, nearly no residual iodobenzene was detected. This means that iodobenzene has been exhausted almost completely. Meanwhile, the yield of the target product N-phenylbenzamide reached a maximum. When the reaction time was longer than 24 h, the amount of N-phenylbenzamide in the DMSO eluent of solid catalyst increased gradually (Table S1). So, the precipitation of N-phenylbenzamide on the solid catalyst resulted in a lower product yield in the supernatant with a prolonged reaction time. The optimum reaction time is 24 h at which iodobenzene has been exhausted almost completely.
NMR Spectra of the Isolated Target Products

(2c) N-phenylbenzamide

The target compound was prepared according to the general procedure using iodobenzene with aniline, and purified by silica gel column chromatography as solid. The observed characterization data (13C) was consistent with that previously reported in the literature. 1H NMR (400MHz, DMSO-d6) δ (ppm): 10.25 (s, 1H), 7.96 (d, J = 8.3 Hz, 2H), 7.79 (d, J = 7.8 Hz, 2H), 7.60 (t, J = 7.2 Hz, 1H), 7.54 (t, J = 7.3 Hz, 2H), 7.36 (t, J = 7.9 Hz, 2H), 7.11 (t, J = 7.4 Hz, 1H). 13C NMR(100 MHz,DMSO-d6) δ (ppm): 166.02, 139.63, 135.45, 132.00, 129.06, 128.84, 128.10, 124.12, 120.83.

(2aa) 4-Methoxy-N-phenylbenzamide

The target compound was prepared according to the general procedure using 4-iodoanisole with aniline, and purified by silica gel column chromatography as solid. 1H NMR (400MHz, DMSO-d6) δ (ppm): 10.08 (s, 1H), 7.97 (d, J = 8.6 Hz, 2H), 7.77 (d, J = 8.1 Hz, 2H), 7.35 (t, J = 7.7 Hz, 2H), 7.11-7.06 (m, 8.1 Hz, 3H), 3.85 (s, 3H). 13C NMR(100 MHz, DMSO-d6) δ (ppm): 165.35, 162.33, 139.80, 130.04, 129.01, 127.43, 123.87, 120.79, 114.05, 55.89.

(2ab) 4-cyano-N-phenylbenzamide

The target compound was prepared according to the general procedure using 4-iodobenzonitrile with aniline, and purified by silica gel column chromatography as solid. 1H NMR (400MHz, DMSO-d6) δ (ppm): 10.48 (s, 1H), 8.12 (d, J = 8.1 Hz, 2H), 8.04 (d, J = 8.1 Hz, 2H), 7.78 (d, J = 7.9 Hz, 2H), 7.38 (t, J = 7.7 Hz, 2H), 7.14 (t, J = 7.4 Hz, 1H). 13C NMR(100 MHz, DMSO-d6) δ (ppm): 164.62, 139.44, 139.19, 132.93, 129.17, 128.99, 124.58, 120.91, 118.79, 114.28.

(2ac) 4-Nitro-N-phenylbenzamide

The target compound was prepared according to the general procedure using 1-iodo-4-nitrobenzene with aniline, and purified by silica gel column chromatography as solid. 1H NMR (400MHz, DMSO-d6) δ (ppm): 10.58 (s, 1H), 8.38 (d, J = 8.6 Hz, 2H), 8.19 (d, J = 8.5 Hz, 2H), 7.79 (d, J = 8.4 Hz, 2H), 7.39 (t, J = 7.7 Hz, 2H), 7.15 (t, J = 7.4 Hz, 1H). 13C NMR(100 MHz, DMSO-d6) δ (ppm): 164.37, 149.59, 141.11, 139.18, 129.67, 129.19, 124.64, 124.02, 120.95.

(2ad) N-Phenyl-3-(trifluoromethyl)benzamide
The target compound was prepared according to the general procedure using 3-iodobenzotrifluoride with aniline, and purified by silica gel column chromatography as solid. 1H NMR (400 MHz, DMSO-d$_6$) δ (ppm): 10.48 (s, 1H), 8.32 – 8.26 (m, 2H), 7.98 (d, J = 7.8 Hz, 1H), 7.80 (t, J = 8.9 Hz, 3H), 7.39 (t, J = 7.7 Hz, 2H), 7.15 (t, J = 7.4 Hz, 1H). 13C NMR (100 MHz, DMSO-d$_6$) δ (ppm): 164.49, 139.24, 136.27, 132.30, 130.20, 129.14, 128.61, 128.58, 124.72, 124.68, 124.50, 121.01.

(2ae) N-Phenyl-2-(trifluoromethyl)benzamide

The target compound was prepared according to the general procedure using 2-iodobenzotrifluoride with aniline, and purified by silica gel column chromatography as solid. 1H NMR (400 MHz, DMSO-d$_6$) δ (ppm): 10.56 (s, 1H), 7.86 (d, J = 7.7 Hz, 1H), 7.81 (t, J = 7.4 Hz, 1H), 7.75-7.68 (m, 4H), 7.36 (t, J = 7.8 Hz, 2H), 7.13 (t, J = 7.4 Hz, 1H). 13C NMR (100 MHz, DMSO-d$_6$) δ (ppm): 166.03, 139.36, 136.70, 133.09, 130.48, 129.25, 128.97, 126.81, 126.76, 126.09, 124.35, 120.10.

(2af) N-Phenyl-4-(trifluoromethyl)benzamide

The target compound was prepared according to the general procedure using 4-iodobenzotrifluoride with aniline, and purified by silica gel column chromatography as solid. 1H NMR (400 MHz, DMSO-d$_6$) δ (ppm): 10.47 (s, 1H), 8.16 (d, J = 8.0 Hz, 2H), 7.93 (d, J = 8.1 Hz, 2H), 7.79 (d, J = 7.9 Hz, 2H), 7.39 (t, J = 7.7 Hz, 2H), 7.14 (t, J = 7.4 Hz, 1H). 13C NMR (100 MHz, DMSO-d$_6$) δ (ppm): 164.86, 139.27, 131.95, 131.63, 129.16, 129.06, 125.88, 125.84, 124.50, 120.90.

(2ag) 4-amino-N-phenylbenzamide

The target compound was prepared according to the general procedure using 4-iodoaniline with aniline, and purified by silica gel column chromatography as solid. 1H NMR (400 MHz, DMSO-d$_6$) δ (ppm): 9.75 (s, 1H), 7.76-7.72 (m, 4H), 7.31 (t, J = 7.8 Hz, 2H), 7.04 (t, J = 7.3 Hz, 1H), 6.61 (d, J = 8.5 Hz, 2H), 5.75 (s, 2H). 13C NMR (100 MHz, DMSO-d$_6$) δ (ppm): 165.74, 152.58, 140.24, 129.80, 128.90, 123.32, 121.57, 120.57, 113.00.

(2ai) 4-hydroxy-N-phenylbenzamide

The target compound was prepared according to the general procedure using aniline with 4-
iodophenol, and purified by silica gel column chromatography as solid. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.09 (s, 1H), 9.98 (s, 1H), 7.86 (d, J = 8.7 Hz, 2H), 7.76 (d, J = 7.6 Hz, 2H), 7.35 – 7.32 (m, 2H), 7.07 (t, J = 7.4 Hz, 1H), 6.87 (d, J = 8.7 Hz, 2H). 13C NMR (100 MHz, DMSO-d6) δ (ppm): 165.55, 160.98, 130.15, 128.97, 125.90, 123.71, 120.72, 115.35.

(2aj) 4-methyl-N-phenylbenzamide

The target compound was prepared according to the general procedure using aniline with 4-iodotoluene, and purified by silica gel column chromatography as solid. The observed characterization data (13C) was consistent with that previously reported in the literature. 2 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.16 (s, 1H), 7.88 (d, J = 8.1 Hz, 2H), 7.78 (d, J = 7.9 Hz, 2H), 7.35 (t, J = 7.7 Hz, 4H), 7.10 (t, J = 7.3 Hz, 1H), 2.40 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ (ppm): 165.80, 142.00, 139.71, 132.55, 129.35, 129.02, 128.14, 123.99, 120.81, 21.48.

(2ak) 4-chloro-N-phenylbenzamide

The target compound was prepared according to the general procedure using aniline with 1-chloro-4-iodobenzene, and purified by silica gel column chromatography as solid. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.32 (s, 1H), 7.99 (d, J = 8.5 Hz, 2H), 7.76 (d, J = 7.9 Hz, 2H), 7.61 (d, J = 8.5 Hz, 2H), 7.37 (t, J = 7.9 Hz, 2H), 7.12 (t, J = 7.4 Hz, 1H). 13C NMR (100 MHz, DMSO-d6) δ (ppm): 164.94, 139.37, 136.85, 134.09, 130.07, 128.92, 124.34, 120.91.

(2al) N-(4-methoxyphenyl)benzamide

The target compound was prepared according to the general procedure using p-anisidine with iodobenzene, acetonitrile as solvent, and purified by silica gel column chromatography as solid. The observed characterization data (13C) was consistent with that previously reported in the literature. 1 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.14 (s, 1H), 7.94 (d, J = 7.2 Hz, 2H), 7.66 (d, J = 8.9 Hz, 2H), 7.58 (t, J = 7.2 Hz, 1H), 7.52 (t, J = 7.3 Hz, 2H), 6.93 (d, J = 9.0 Hz, 2H), 3.75 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ (ppm): 165.71, 156.07, 135.41, 132.56, 131.90, 128.85, 127.97, 122.58, 114.22, 55.65.

(2am) N-(4-ethylphenyl)benzamide

The target compound was prepared according to the general procedure using 4-ethylaniline with iodobenzene, and purified by silica gel column chromatography as solid. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.24 (s, 1H), 8.03 (d, J = 6.8 Hz, 2H), 7.77 (d, J = 8.4 Hz, 2H), 7.61 – 7.52 (m, 3H), 7.21 (d, J = 8.4 Hz, 2H), 2.61 (q, J = 7.6 Hz, 2H), 1.21 (t, J = 7.6 Hz, 3H). 13C NMR (100 MHz, DMSO-d6) δ (ppm): 165.88, 139.60, 137.34, 135.54, 131.88, 128.78, 128.23, 128.08, 121.00,
The target compound was prepared according to the general procedure using p-toluidine with
iodobenzene, acetonitrile as solvent, and purified by silica gel column chromatography as solid. 1H NMR (400 MHz, DMSO-d$_6$) δ (ppm): 10.17 (s, 1H), 7.96 (d, $J = 7.2$ Hz, 2H), 7.67 (d, $J = 8.3$ Hz, 2H), 7.59 (t, $J = 7.2$ Hz, 1H), 7.53 (t, $J = 7.3$ Hz, 2H), 7.16 (d, $J = 8.2$ Hz, 2H), 2.29 (s, 3H). 13C NMR (100 MHz, DMSO-d$_6$) δ (ppm): 165.79, 137.10, 135.51, 133.05, 131.89, 129.44, 128.81, 128.05, 120.85, 20.96.

The target compound was prepared according to the general procedure using o-toluidine with
iodobenzene, and purified by silica gel column chromatography as solid. 1H NMR (400 MHz, DMSO-d$_6$) δ (ppm): 9.88 (s, 1H), 8.00 (d, $J = 7.2$ Hz, 2H), 7.60 (t, $J = 7.3$ Hz, 1H), 7.54 (t, $J = 7.3$ Hz, 2H), 7.36 (d, $J = 7.5$ Hz, 1H), 7.29 (d, $J = 7.4$ Hz, 1H), 7.23 (t, $J = 6.8$ Hz, 1H), 7.20 – 7.15 (m, 1H), 2.25 (s, 3H). 13C NMR (100 MHz, DMSO-d$_6$) δ (ppm): 165.73, 136.88, 135.01, 134.18, 131.97, 130.76, 128.87, 128.08, 127.08, 126.45, 18.37.

The target compound was prepared according to the general procedure using m-toluidine with
iodobenzene, and purified by silica gel column chromatography as solid. 1H NMR (400 MHz, DMSO-d$_6$) δ (ppm): 10.17 (s, 1H), 7.97 (d, $J = 7.0$ Hz, 2H), 7.65 (s, 1H), 7.60 (m, 2H), 7.54 (t, $J = 7.3$ Hz, 2H), 7.24 (t, $J = 7.8$ Hz, 1H), 6.94 (d, $J = 7.5$ Hz, 1H), 2.32 (s, 3H). 13C NMR (100 MHz, DMSO-d$_6$) δ (ppm): 165.93, 139.56, 138.19, 135.49, 131.95, 128.89, 128.08, 124.81, 121.38, 118.02, 21.69.

The target compound was prepared according to the general procedure using 4-bromoaniline with
iodobenzene, acetonitrile as solvent, and purified by silica gel column chromatography as solid. 1H NMR (400 MHz, DMSO-d$_6$) δ (ppm): 10.38 (s, 1H), 7.96 (d, $J = 7.1$ Hz, 2H), 7.78 (d, $J = 8.9$ Hz, 2H), 7.61 (t, $J = 7.3$ Hz, 1H), 7.56 (d, $J = 1.5$ Hz, 2H), 7.55 – 7.53 (m, 2H). 13C NMR (100 MHz, DMSO-d$_6$) δ (ppm): 166.12, 139.04, 135.16, 132.18, 131.89, 128.89, 128.14, 122.67, 115.79.

The target compound was prepared according to the general procedure using 4-chloroaniline with
iodobenzene, acetonitrile as solvent, and purified by silica gel column chromatography as solid. 1H NMR (400 MHz, DMSO-d$_6$) δ (ppm): 10.38 (s, 1H), 7.96 (d, $J = 7.1$ Hz, 2H), 7.78 (d, $J = 8.9$ Hz, 2H), 7.61 (t, $J = 7.3$ Hz, 1H), 7.56 (d, $J = 1.5$ Hz, 2H), 7.55 – 7.53 (m, 2H). 13C NMR (100 MHz, DMSO-d$_6$) δ (ppm): 166.12, 139.04, 135.16, 132.18, 131.89, 128.89, 128.14, 122.67, 115.79.
The target compound was prepared according to the general procedure using 4-chloroaniline with iodobenzene, acetonitrile as solvent, and purified by silica gel column chromatography as solid. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.38 (s, 1H), 7.96 (d, $J = 7.1$ Hz, 2H), 7.84 (d, $J = 8.9$ Hz, 2H), 7.61 (t, $J = 7.3$ Hz, 1H), 7.55 (t, $J = 7.3$ Hz, 2H), 7.42 (d, $J = 8.9$ Hz, 2H). 13C NMR (100 MHz, DMSO-d6) δ (ppm): 166.12, 138.62, 135.17, 132.17, 128.98, 128.88, 128.13, 122.30.

(2aw) N-benzylbenzamide

The target compound was prepared according to the general procedure using benzylamine with iodobenzene, and purified by silica gel column chromatography as solid. The observed characterization data (13C) was consistent with that previously reported in the literature.$^{1, 3, 4}$ 1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.05 (t, $J = 5.5$ Hz, 1H), 7.91 (d, $J = 7.1$ Hz, 2H), 7.55 (t, $J = 7.2$ Hz, 1H), 7.48 (t, $J = 7.3$ Hz, 2H), 7.34 (s, 2H), 7.33 (s, 2H), 7.28 – 7.23 (m, 1H), 4.50 (d, $J = 6.0$ Hz, 2H). 13C NMR (100 MHz, DMSO-d6) δ (ppm): 166.66, 140.18, 134.82, 131.70, 128.79, 128.74, 127.71, 127.66, 127.19, 43.07.

(2ax) N-cyclohexylbenzamide

The target compound was prepared according to the general procedure using cyclohexylamine with iodobenzene, and purified by silica gel column chromatography as solid. The observed characterization data (13C) was consistent with that previously reported in the literature.$^{1, 4}$ 1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.19 (d, $J = 7.7$ Hz, 1H), 7.84 (d, $J = 7.1$ Hz, 2H), 7.51 (t, $J = 7.2$ Hz, 1H), 7.45 (t, $J = 7.3$ Hz, 2H), 3.77 – 3.76 (m, 1H), 1.83 – 1.82 (m, 2H), 1.75 – 1.73 (m, 2H), 1.37 – 1.25 (m, 6H). 13C NMR (100 MHz, DMSO-d6) δ (ppm): 165.79, 135.36, 131.36, 128.57, 127.71, 125.18, 48.78, 32.89, 25.37, 25.21.

References
(2c) N-phenylbenzamide
(2aa) 4-Methoxy-N-phenylbenzamide
(2ab) 4-cyano-N-phenylbenzamide
(2ac) 4-Nitro-N-phenylbenzamide
(2ad) N-Phenyl-3-(trifluoromethyl)benzamide
(2ae) N-Phenyl-2-(trifluoromethyl)benzamide
(2af) N-Phenyl-4-(trifluoromethyl)benzamide
(2ag) 4-amino-N-phenylbenzamide
(2ai) 4-hydroxy-N-phenylbenzamide
(2aj) 4-methyl-N-phenylbenzamide
(2ak) 4-chloro-N-phenylbenzamide
(2al) N-(4-methoxyphenyl)benzamide
(2-am) N-(4-ethylphenyl)benzamide
(2an) N-(4-methylphenyl)benzamide
(2ao) N-(2-methylphenyl)benzamide
(2ap) N-(3-methylphenyl)benzamide
(2ar) N-(4-bromophenyl)benzamide
(2at) N-(4-chlorophenyl)benzamide
(2aw) N-benzylbenzamide
(2ax) N-cyclohexylbenzamide
Mass Spectra of the Extended Reactions

(a)

(b)
Mass Spectra of the Products for Different Reactions