Tunable electronic and magnetic properties of arsenene nanoribbons

Lei Aoa,b, Anh Phamb,c,*, Frank Klosec,d, Xia Xianga+, Sean Lib, and Xiaotao Zua

a School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China

b School of Material Science and Engineering, University of New South Wales, Sydney 2052, Australia

c Australian Nuclear Science and Technology Organization, Lucas Heights 2234, Australia

d Guangdong Technion Israel Institute of Technology, Shantou, China

E-mail: *anh.pham@unsw.edu.au

+xiaxiang@uestc.edu.cn
Fig. S1 Band structure of the As monolayer. The Fermi level is set to zero. The indirect band gap is indicated by the blue arrow.

Fig. S2 Orbital-resolved band structures of the As 12-NR with the (a) unpassivated AC edge, (b) H passivated AC edge, (c) unpassivated ZZ-1 edge (nonmagnetic state), (d) H passivated ZZ-1 edge, (e) unpassivated ZZRC-o edge and (f) H passivated ZZRC-o edge. The Fermi level is set to zero.
Fig. S3 (a) Band structures and (b) variation of the band gap of the unpassivated \textit{a-NRs} versus ribbon width \textit{n}. The Fermi level is set to zero.

Fig. S4 Band structures of the H passivated As \textit{a-NRs} versus ribbon width \textit{n}. The Fermi level is set to zero.
Fig. S5 Strain-dependent orbital-resolved band structures of the unpassivated As 12-a-NR. The color coding of the As p orbitals is the same as that in Fig. S2.

Fig. S6 Strain-dependent orbital-resolved band structures of the H passivated As 12-a-NR. The color coding of the As p orbitals is the same as that in Fig. S2.

Fig. S7 Schematic view of the unpassivated As 12-z-NRs with different magnetic configurations.
Fig. S8 Band structures of the H passivated As z-NRs versus ribbon width n. The Fermi level is set to zero.

Fig. S9 Strain-dependent orbital-resolved band structures of the H passivated As 12-z-NR. The Fermi level is set to zero. The color coding of the As p orbitals is the same as that in Fig. S2.
Fig. S10 (a) Band structures and (b) variation of the band gap of the zz-o-NRs versus ribbon width \(n \). The Fermi level is set to zero.

Fig. S11 Strain-dependent orbital-resolved band structures of the H passivated As 12-zz-o-NR. The Fermi level is set to zero. The color coding of the As \(p \) orbitals is the same as that in Fig. S2.
Fig. S12 Strain-dependent orbital-resolved band structures of the unpassivated As 12-2z-o-NR. The Fermi level is set to zero. The color coding of the As p orbitals is the same as that in Fig. S2.