Supporting information for

Rhodamine 6G hydrazone with coumarin unit: a novel single-molecule multianalyte (Cu^{2+} and Hg^{2+}) sensor at different pH value

Zhou-Qing Xu, Xian-Jie Mao, Yuan Wang*, Wei-Na Wu*, Pan-Dong Mao, Xiao-Lei Zhao, Yun-Chang Fan, Hui-Jun Li*

Fig. S1 The influence of tested ions on the fluorescence intensity ratio at 550 and 498 nm (F_{550}/F_{498}) of RC1 in CH\textsubscript{3}CN/H\textsubscript{2}O (9/1, v/v, pH = 7.4) solution, excitation wavelength was 445 nm.

Fig. S2 The overlap (shown with vertical stripes) between emission and absorption spectra of the donor and acceptor, respectively.
Fig. S3 Normalized response of fluorescence ratio calibration value \((R = F_{550}/F_{498})\) for **RC1** as a function of \(\text{Cu}^{2+}\) concentration in \(\text{CH}_3\text{CN}/\text{H}_2\text{O} (9/1, \text{v/v}, \text{pH} = 7.4)\) solution.

Fig. S4 Normalized response of fluorescence calibration value (intensity at 498 nm) for **RC1** as a function of \(\text{Hg}^{2+}\) concentration in \(\text{CH}_3\text{CN}/\text{H}_2\text{O} (9/1, \text{v/v}, \text{pH} = 10.0)\) solution.
Fig. S5 Job plots of RC1 and Hg$^{2+}$ in CH$_3$CN/H$_2$O (9/1, v/v, pH = 10.0) solution. The total concentration of RC1 and Hg$^{2+}$ were all kept at 5 μM.

Fig. S6 The Benesi-Hildebrand plot of the RC1-Hg$^{2+}$ complex based on fluorescence intensity at 498 nm.
Fig. S7 ESI-MS spectrum of the sensor RC1 with Cu$^{2+}$ in CH$_3$CN solution.

Fig. S8 ESI-MS spectrum of the sensor RC1 with Hg$^{2+}$ in CH$_3$CN solution.
Fig. S9 Partition of 1H NMR spectrum of the sensor RC1 with and without Hg$^{2+}$ in DMSO-d_6 solution.

Fig. S10 The effect of pH (2.0-11.0) on the fluorescence ratio (F_{550}/F_{498}) of 5 μM probe RC1 with 5 equiv. Cu$^{2+}$ in CH$_3$CN/H$_2$O (9/1, v/v, pH = 7.4) solution.
Fig. S11 The effect of pH (2.0-11.0) on the relative fluorescence intensity of 5 μM probe RC1 with 5 equiv. Hg²⁺ in CH₃CN/H₂O (9/1, v/v, pH = 10.0) solution.

Fig. S12 The effect of 5 equiv. coexistent metal cations on the relative fluorescence intensity of 5 μM RC1 with 5 equiv. Cu²⁺ in CH₃CN/H₂O (9/1, v/v, pH = 7.4) solution.
Fig. S13 The effect of 5 equiv. coexistent metal cations on the relative fluorescence intensity of 5 μM RC1 with 5 equiv. Hg$^{2+}$ in CH$_3$CN/H$_2$O (9/1, v/v, pH = 10.0) solution.

Fig. S14 Time course for the fluorescence ratio change (F$_{550}$/F$_{498}$) of 5 μM RC1 upon the addition of 5.0 equiv. Cu$^{2+}$ in CH$_3$CN/H$_2$O (9/1, v/v, pH = 7.4) solution at room temperature.
Fig. S15 Time course for the fluorescence response at 498 nm of 5 μM RC1 upon the addition of 5.0 equiv. Hg$^{2+}$ in CH$_3$CN/H$_2$O (9/1, v/v, pH = 10.0) solution at room temperature.

Fig. S16 Fluorescence response of Cu$^{2+}$ ions (5 eq.) to the sensor RC1 (5 μM) with and without Na$_2$EDTA (5 eq.) in CH$_3$CN/H$_2$O (9/1, v/v, pH = 10.0) solution.
Fig. S17 Fluorescence intensity changes (490 nm) of R1 (5 μM) upon alternating addition of Hg$^{2+}$ (5 eq.)/EDTA (5 eq.) in CH$_3$CN/H$_2$O (9/1, v/v, pH = 10.0) solution.

Fig. S18 1H NMR spectrum of R1 in DMSO-d_6 solution.
Fig. S19 ESI-MS spectrum of RC1 in CH$_3$CN solution.