Supporting Information

Highly efficient FRET from aggregation-induced emission to BODIPY emission based on host-guest interaction for mimicking the light-harvesting system

Shuai Wang, a Jia-Hai Ye, *a Zhong Han, b Zheng Fan, a Caijiang Wang, a Cancan Mu, a Wenchao Zhang a and Weijiang He *b

a School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China, E-mail: yejiahai@njust.edu.cn

b State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China, E-mail: heweij69@nju.edu.cn

Table of Contents

General Information ... S2
General Procedure for UV-Vis and Fluorescence Studies............................... S2
Synthesis and Characterization of Chemodosimeter M1.............................. S2-S4
Synthesis and Characterization of Chemodosimeter M2............................ S4-S5
UV-vis and Fluorescence experiments and TEM Imaging............................. S5-S13
References ... S13
Calculation of FRET Efficiency.. S13-14
1H NMR spectra titration... S15- S16
1H and 13C NMR and MS Spectra of Chemodosimeter M1...................... S16-S19

9
General Information

All chemical reagents were commercially available and of analytical grade without further purification except especially noted. The stock solutions of K+ were prepared from KCl with doubly distilled water. Melting points were measured with a Shanghai WRS-1B digital melting point apparatus. ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) were measured on a Bruker Avance III spectrometer. Electrospray mass spectra (ESI-MS) were recorded on a Thermo Fisher LCQ. Elemental analyses were obtained using a Perkin-Elmer-240C analyzer. Fluorescence spectra were determined on a Perkin Elmer LS-55. UV-vis spectra were measured on a Shimadzu UV-3600. Transmission electron micrographs were obtained using JEOL 2010 transmission electron microscope (TEM) at an accelerating voltage of 200 KV. Stock solutions for analysis were prepared (1×10⁻⁵ mol·L⁻¹ for compound M1 or M2 in THF:H₂O = 1:9, v/v) immediately before the experiments.

General Procedure for UV-Vis and Fluorescence Studies

Stock solutions of metal ions were prepared (1×10⁻² mol/L) in deionized water. A stock solution of compound M2 was prepared (1×10⁻² mol/L) in THF:H₂O (1:9, v/v). A stock solution of compounds M1 or M2 (1×10⁻⁵ mol·L⁻¹) was prepared in THF:H₂O (1:9, v/v) immediately before the experiments. In experiments, each time a 3 mL solution of M1 (10 μM) was filled in a quartz optical cell of 1 cm optical path length, and then the M2 (10 mM) stock solution was added. For fluorescence measurements, fluorescence intensity obtained with the band path 320-600 nm upon excitation at 305 nm and band path 460-660 nm upon excitation at 450 nm.

Synthesis and Characterization of Chemodosimeter M1

\[
\begin{align*}
\text{A}_1 & \xrightarrow{\text{Zn, TiCl}_4, \text{THF},70^\circ\text{C}} \text{A}_2 \xrightarrow{\text{NBS, BPO, CCl}_4} \text{1} \\
\text{B}_1 & \xrightarrow{\text{TsO, NaBH}_4, \text{THF}} \text{B}_2 \xrightarrow{\text{TsO, K}_2\text{CO}_3, \text{MeCN}} \text{B}_3 \xrightarrow{\text{TsO, NaBH}_4, \text{DMF}} \text{B}_5 \xrightarrow{\text{NaBH}_4} \text{2}
\end{align*}
\]
Compound 1 was synthesized according to known procedure.51 (a)

Synthesis of compound 2

(1) A 500ml three-necked round-bottom flask were added B\textsubscript{1} (80g, 0.532mol) with 50ml THF, a solution of NaOH in Deionized water was dropwised into the mixture, then a solution of TsCl in THF was added in ice bath. The mixture was stirred for 5h in room temperature. The solvent was removed at reduced pressure, the residue was dissolved in EA, washed with water several times, The organic layer was dried over Mg SO\textsubscript{4}, and concentrated under reduced pressure. The product B\textsubscript{2} (38g, yield: 89.2\%) was obtained.

(2) Into a nitrogen-filled 500ml three-necked round-bottom flask were added B\textsubscript{2} (15.1g, 49.7 mmol), K\textsubscript{2}CO\textsubscript{3} (9.6g, 69 mmol), 1,2-benzenedio(2.5g, 22.7 mmol) and 300ml MeCN. After refluxing overnight, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The red oil product B\textsubscript{3} was obtained.

(3) Into a 500ml three-necked round-bottom flask were added B\textsubscript{3} with 300ml THF, the solution was cooled to 4 °C and the solution of NaOH was added dropwise. After stirring a few minutes a solution of TsCl in THF was added dropwise, the reaction mixture was stirred 24 hours at room temperature. The solution was concentrated under reduced pressure, dissolved in DCM, washed several times, dried over MgSO\textsubscript{4} and filtered, the filtrate was concentrated under reduced pressure. The crude product was purified in a silica gel column using PE as an eluent to yield B\textsubscript{4} as Yellow oil (5.1g, yield: 66.1\%).

(4) Into a nitrogen-filled 500ml three-necked round-bottom flask were added B\textsubscript{4} (8.3g, 12.15 mmol), 3,4-dihydroxy-benzaldehyd (1.62g, 11.72 mmol), Cs\textsubscript{2}CO\textsubscript{3}(8g, 24.8 mmol) and 200ml DMF. After refluxing 4 days, the mixture was filtered and concentrated. The crude product was purified in a silica gel column using PE-EA (v/v=1:3) as an eluent to yield B\textsubscript{5} as a white solid (2.08g, yield: 37.3\%).

(5) Into a 250ml three-necked round-bottom flask were added B\textsubscript{5} (1.4g, 2.94mmol) with 100ml THF/MeOH (v/v=1:1), the reaction mixture was cooled to 4°C and then NaBH\textsubscript{4} (0.38g,10mmol) was added. After stirring at room temperature overnight, the solution was poured into water and extracted with DCM several times, The organic layer was combined and washed with water and brine, and then dried over MgSO\textsubscript{4}.After filtration and solvent evaporation, the compound 2 was obtained (1.3g, yield 90\%).
Synthesis of compound M1

In a three-necked flask, compound 2 (480mg, 1.0mmol) was dissolved in 50ml of distilled THF. The solution was cooled to 4°C, and then NaH (480mg, 20mmol) was added. After stirring a few minutes, the solution of compound 1 (220mg, 0.42mmol) in 20ml of distilled THF was added dropwise into the mixture with continuous stirring for 40 minutes. After refluxing overnight, the solution was concentrated under reduced pressure, dissolved in DCM, washed several times, dried over MgSO₄ and filtered, the filtrate was concentrated under reduced pressure. The crude product was purified in a silica gel column using PE-EA (v/v=1:3) as an eluent to yield M1 as white solid (188.6mg, yield 34.2%). M.P. 53.0℃-55.5℃. 1H-NMR (500 MHz, CDCl₃) δ (TMS, ppm): 7.08 (d, J = 6.5, 3.0 Hz, 10H), 7.00 (s, 8H), 6.87 (t, J = 2.6 Hz, 10H), 6.82 (s, 4H), 4.41 (d, J = 3.0 Hz, 8H), 4.14 (d, J = 5.5, 3.0 Hz, 16H), 3.91 (m, J = 2.2 Hz, 16H), 3.83 (s, 16H); 13C-NMR (125 MHz, CDCl₃) δ (TMS, ppm): 148.97, 148.50, 148.33, 143.68, 143.12, 140.73, 136.29, 134.48, 131.35, 127.67, 127.63, 127.21, 126.44, 121.47, 121.05, 119.89, 114.18, 113.98, 113.82, 113.05, 77.40, 77.14, 76.89, 69.91, 69.90, 69.53, 69.38, 64.96; ESI-MS: m/z = 1335.80 (M+Na⁺). Element analysis (%)
Calca. For C_{78}H_{88}O_{18}: C, 71.32; H, 6.75. Found: C, 71.56; H, 6.59.

Synthesis and Characterization of Chemodosimeter M2

![Synthetic pathway of compound M2](image)

Compound 3 was synthesized according to known procedure.⁵¹ ³¹

Synthesis of compound 4

(1) Into a 500ml three-necked round-bottom flask were added 4-Hydroxybenzaldehyde (4.9g, 40 mmol), Propargyl bromide (14.28g, 120 mmol) and 300ml acetone with stirring for a few minutes, then Potassium carbonate (11g, 80 mmol) was added. After refluxing for 4 hours, the reaction mixture was cooled to room temperature, the solution was filtered and the filtrate was concentrated under reduced pressure. The residue was dissolved in DCM, washed with water and brine several times, dried over MgSO₄ and filtered, the filtrate was concentrated under reduced pressure, recrystallization with PE, the white solid was obtained (5.76g, yield:90%).

(2) Into a 500ml three-necked round-bottom flask were added above white solid (16g, 0.1 mol), benzylamine (22g, 0.2 mol) and 250ml DCM/MeOH (v/v=3:2), the mixture was stirred for
overnight, then the solution was cooled to 4°C, NaBH₄ (3.8g, 0.1mol) was added with continuous stirring for 40 minutes. After stirring for overnight at room temperature the solution was poured into water and extracted with DCM several times, washed with brine and then dried over MgSO₄. After filtration and solvent evaporation, the crude product was purified in a silica gel column using PE-EA (v/v=5:1) as an eluent to give compound 4 as colourless oil (12g, yield: 56%).

Synthesis of compound M2

Into a 50ml three-necked round-bottom flask were added compound 3 (410mg, 1.0 mmol), compound 4 (251mg, 1.0 mmol), CuSO₄·5H₂O (400 mg), VCNa (640 mg) and 25ml THF/H₂O (V/V=4:1). The reaction mixture was stirred for 12 hours at room temperature, and then filtered. The filtrate was concentrated under reduced pressure, and the residue was dissolved in DCM, washed with brine several times and dried over MgSO₄. After filtration and solvent evaporation, the crude product was purified in a silica gel column using PE-EA (v/v=3:1) as an eluent to give purple solid compound M2 (370mg, yield 56%). M.P. 124.1°C-126.5°C.

1H-NMR (500 MHz, DMSO-d₆) δ (TMS, ppm): 8.33 (s, 1H), 7.40-7.18 (m, 9H), 7.09 (d, J = 8.7 Hz, 2H), 6.99 (d, J = 8.6 Hz, 2H), 6.16 (s, 2H), 5.14 (s, 2H), 4.82 (t, J = 5.0 Hz, 2H), 4.48 (t, J = 5.1 Hz, 2H), 3.65 (d, J = 23.6 Hz, 4H), 2.44 (s, 6H), 1.37 (s, 6H);

13C-NMR (125 MHz, DMSO-d₆) δ (TMS, ppm): 154.01, 142.05, 130.40, 128.57, 128.53, 127.45, 127.36, 125.98, 124.49, 120.61, 114.63, 113.72, 60.36, 51.26, 50.76, 48.41, 38.80, 38.38, 13.56; ESI-MS: m/z = 661.24 [M+H⁺].

Element analysis (%) Calca. For C₃₈H₃₉BF₂N₆O₂: C, 66.09; H, 5.95; N, 12.72. Found: C, 66.18; H, 5.87; N, 12.65.

Emission Spectra of compound M1 in different ratio of THF/H₂O

Fig. S3: Fluorescence spectra of compound M1(10 μM) in THF/H₂O (v/v) medium (λₑₓ: 305 nm)
Absorption and Emission Spectra of compound M$_2$ in THF/H$_2$O (1:9, v/v)
Figure S4: (a) Absorbance of M_2, (b) Absorbance of compound M_1 (10μM) with M_2 (1.0 equiv) in THF/H$_2$O (1:9, v/v), (c) fluorescence spectra of compound M_2 (10μM) in THF/H$_2$O (1:9, v/v) medium (λ_{ex}: 305nm & 450nm), (d) fluorescence spectra of compound M_2 (10μM) in different ratio of THF/H$_2$O (1:9, v/v) medium (λ_{ex}: 450nm), (e) Absorbance of compound M_2 (10μM) in THF/H$_2$O (1:9, v/v) and fluorescence spectra of compound M_1 (10μM) in THF/H$_2$O (1:9, v/v) medium (λ_{ex}: 305nm).
Emission Spectra of compound M1 or M2 and in the presence of Acid or Base

Figure S5: (a) Fluorescence spectra of compound M1 (10µM) with acid or base (40µM, 4 equiv) in THF/H₂O (1:9, v/v) medium (λₑx: 305nm),(b) Fluorescence spectra of compound M2 (10µM) with acid or base (40µM, 4 equiv) in THF/H₂O (1:9, v/v) medium (λₑx: 450nm).

Fluorescence Titration Spectra of compound M1 upon addition of M2
Figure S6: (a) Fluorescence spectra of compound M1 (10μM) towards M2 (0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21, 0.24, 0.27, 0.30, 0.33, 0.36 equiv) in THF/H2O (1:9, v/v) medium (λex: ...
305nm), (b) plot of fluorescence depending on the equiv of M2 at 465nm, (C) plot of fluorescence depending on the equiv of M2 at 510nm.

The observed visual color change to the reaction

![Image of visual color change in different conditions](image1)

(a) Visible light

(b) UV light (365 nm lamp)

Figure S7: Observed visual color and fluorescence change of compound M1 (10μM) upon addition of 0.12equiv of compound M2 in THF/H2O (1:9, v/v) medium for 3 hours.

Diameter of M1

![Diameter distribution graph](image2)

Figure S8. DLS data of the M1 aggregated particle
Imaging of M₁&M₂ in TEM

Figure S9. (a) Imagine of M₁ (10μM) in TEM at 1000nm, (b) Imagine of M₁ (10μM) upon addition of M₂(0.3equiv) in TEM at 200nm, (c)Imagine of M₁ (10μM) with M₂(1.0equiv) in TEM at 200nm.

The Fluorescence Titration Spectra of M₁ under Acid and Base condition

![Fluorescence Spectra](image)
Figure S10: (a) Fluorescence spectra of compound M1 (10μM) with Base towards M2 (0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18 equiv) in THF/H2O (1:9, v/v) medium (λex: 305nm), (b) fluorescence spectra of compound M1 (10μM) with Acid towards M2 (0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18 equiv) in THF/H2O (1:9, v/v) medium (λex: 305nm).

The Fluorescence Titration Spectra of M1 and M2 under Acid and Base conditions

Figure S11:
Figure S11: Fluorescence spectra of compound M₁ (10μM) with M₂ (0.12equiv) towards Base (0, 0.03, 0.06, 0.09equiv) and Acid(0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.21, 0.24equiv) in THF/H₂O (1:9, v/v) medium (λₓє: 305nm).

Fluorescence Titration Spectra of compound M₁&M₂ upon addition of K⁺

![Fluorescence Spectra](image)

Figure S12: Fluorescence spectra of compound M₁ (10μM) with M₂ (0.50equiv) towards K⁺ (0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.21, 0.24, 0.27, 0.30, 0.42, 0.54, 0.66, 0.78, 0.90, 1.20, 1.50, 1.80, 2.10, 2.40, 2.70, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00, 10.00equiv) in THF/H₂O (1:9, v/v) medium (λₓє: 305nm).

References:

S1: (a) Liang, Jing et al. J. Mater. Chem. B, 2014, 2, 4363

Calculation of FRET Efficiency:

\[E = 1 - \frac{F_{DA}}{F_D} \]

Where \(F_{DA} \) is the integrated fluorescence intensity of donor in presence of acceptor and \(F_D \) is in absence of acceptors.

Efficiency in each case has been calculated based on the integrated donor emission intensities in absence and presence of acceptors.
Efficiency = 1 − \(\frac{F_{D_a}}{F_{D}} \times \left[1 - \frac{36088060}{516434005} \right] \) x 100 = 93%

Figure S13. Emission spectra of donor M1 in absence of acceptor M2. The integrated area for the M1 contribution after titration has been marked in red line.
The change of the 1H NMR spectra after the addition of acid and base

Figure S14. Partial 1H NMR spectra (500 MHz, CDCl₃): (a) 1H NMR spectrum of host M1 (1.0 mM), (b) 1H NMR spectrum of host M1 (1.0 mM) upon addition of 0.5 equiv. of guest M2, (c) 1H NMR spectrum of host M1 (1.0 mM) upon addition of 1.0 equiv. of guest M2 in CDCl₃, (d) 1H NMR spectrum of host-guest system in (b) upon addition of 2.0 equiv. of CF₃COOH, (e) 1H NMR spectrum of host-guest system in (c) upon addition of 4.0 equiv. of DBU.

H_a: 4.192, H_b: 3.945, H_c: 3.860, H_d&H_l:4.453, H_t: 5.248, H_w: 4.848,

1H NMR、13C NMR and MS spectrum

Figure S15: 1H NMR spectrum of compound M_1 in CDCl$_3$
Figure S16: 13C NMR spectrum of compound M_1 in CDCl$_3$

Figure S17: MS spectrum of compound M_1
Figure S18: 1H NMR spectrum of compound M_2 in d6-DMSO

Figure S19: 13C NMR spectrum of compound M_2 in d6-DMSO
Figure S20: MS spectrum of compound M_2